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ABSTRACT 

The Advanced Encryption Standard (AES) contest, started by the U.S. National Institute of 

Standards and Technology (NIST), saw the Rijndael [13] algorithm as its winner [11]. 

Although the AES is fully defined in terms of functionality, it requires best exploitation of 

architectural parameters in order to reach the optimum performance on specific 

architectures. Our work concentrates on ARM cores [1] widely used in the embedded 

industry. Most promising implementation choices for the common ARM Instruction Set 

Architecture (ISA) are identified, and a new implementation for the linear mixing layer is 

proposed. The performance improvement over current implementations is demonstrated by a 

case study on the Intel StrongARM SA-1110 Micropro-cessor [2]. Further improvements 

based on exploitation of memory hierarchies are also described, and the correspond-ing 

performance figures are presented. 
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1.     INTRODUCTION 
The AES, developed to replace The old Data Encryption Standard (DES), is the result of a 

four-year effort involving the cooperation between the U.S. Government, private industry and 

academia from around the world. The call for algorithms made by NIST required that 

algorithms must be based on symmetric key cryptography and work as a block cipher. 

Among fifteen candidate algorithms, Rijn-dael’s combination of security, performance, 

efficiency, ease of implementation and flexibility made it the most appropriate choice for 

NIST as the Advanced Encryption Standard. 

With the increasing use of portable and wireless devices in the business and daily life, 

protecting sensitive information via encryption is becoming more and more crucial. High-

performance, low-power ARM processor cores are now li-censed by many major 

semiconductor partners and widely used in smart cards, portable communication devices and 

by consumer electronics industry. Our work aims in fact at performing a comprehensive 

exploration of the solution space for efficient software implementations of AES on ARM 

processors. Efficient software implementations of AES pro-posed so far are listed in [13] [17] 

[12]. However, in this work, the peculiarities of the common ARM ISA suited for AES are 

identified and appropriately exploited, also allowing us to design a new implementation, 

which exhibits interesting features with respect to the known ones. 

This paper is organised as follows: Sect. 2 describes the Rijndael algorithm. Sect. 3 presents 

the ARM ISA and the related optimisations. Sect. 4 presents Intel StrongARM SA-1110 

Microprocessor architecture, real performance fig-ures on this processor, together with 

improvements due to ISA related optimisations, and improvements due to ex-ploitation of 

memory hierarchies and cache locking mech-anisms. Finally Sect. 5 summarizes our results. 

2.     THE RIJNDAEL ALGORITHM 
Rijndael is an iterated block cipher with a variable block length and key length [14] [15]. The 

block length and the key length can be independently set to 128, 192 or 256 bits, whereas 

AES restricts the block length to 128 bits only [16]. 

The number of round transformations to be applied on the input blocks is either 10, 12 or 14, 

depending on the key length. The round transformation is composed of three dis-tinct 

invertible transformations, called layers: (1) the non-linear layer, (2) the linear mixing layer, 

and (3) the key ad-dition layer. The different transformations operate on the intermediate 
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result called the State. The State can be con-sidered as a two dimensional array of bytes. The 

array has four rows, and the number of columns depend on the block length. The nonlinear 

layer makes a nonlinear byte substi-tution on each of the State bytes. The linear mixing layer 

rotates the rows of the state array over different offsets, and applies a linear transformation 

called the MixColumn trans-formation on each column of the State. The key addition layer 

simply XORs State bytes with subkey bytes that are generated after a keyschedule. 

All the operations described above, with the exception of the MixColumn transformation, are 

quite straightforward to implement, therefore we will mainly concentrate on imple-mentation 

of the MixColumn transformation in this paper. This is also justified by the fact that in 

compact implementa-tions the MixColumn transformation is responsible for about 50% of 

the encryption time. 

2.1     The MixColumn Transformation 

The  MixColumn  transformation  makes  use  of  arithmetic operations in the finite field 

GF(2n ). 

Table  1:  Look-up  tables  used  by  different  versions Table  2:  Sizes  of  the  look-up  tables  in  bytes 
         
 Version Encryption Decryption   Look-up  table Size  in  bytes  
 V1 Sbox InvSbox   Sbox 256  
 V1T Sbox InvSbox   InvSbox 256  
 V2 Sbox  +  Enc.  table InvSbox  +  Dec.  table   Enc.  table 1K  
      Dec.  table 1K  
 

We assume that the reader has a basic background of Galois Fields, but for com-pleteness we 

recall that addition in GF(2n ) is equivalent to a simple bitwise XOR, while multiplication is 

obtained by reducing the result of standard multiplication (with XOR as sum) modulo a fixed 

polynomial. This polynomial must be irreducible to preserve the algebraic structure of field. 

In the MixColumn transformation, each column of the State is considered as a polynomial 

with coefficients in GF (28 ), and multiplied modulo x4 + 1 with a fixed polynomial {03}x3 + 

{01}x2 + {01}x + {02}, coprime to the modulo. Assum-ing that the column before 

transformation consists of the bytes (b0 , b1, b2 , b3 ), each byte representing a polynomial in 

GF (28 ), the transformed column bytes (c0, c1, c2, c3) are computed as follows: 

 

c0 = {02} ₃ b0  ⊕ {03} ₃ b1  ⊕ {01} ₃ b2  ⊕ {01} ₃ b3  
 

c1 = {01} ₃ b0  ⊕ {02} ₃ b1  ⊕ {03} ₃ b2  ⊕ {01} ₃ b3 (1)  c2 = {01} ₃ b0  ⊕ {01} ₃ b1  ⊕ {02} ₃ b2  ⊕ {03} ₃ b3  

  

c3 = {03} ₃ b0  ⊕ {01} ₃ b1  ⊕ {01} ₃ b2  ⊕ {02} ₃ b3  
 

 



IJREAS       Volume 3, Issue 3 (March 2013) ISSN: 2249-3905 

 International Journal of Research in Engineering & Applied Sciences 158 
 http://www.euroasiapub.org 

where ₃ denotes polynomial multiplication in GF (28 ) de-fined by the irreducible polynomial 

x8 + x4 + x3 + x + 1, and ⊕ denotes simple XOR at byte level. Multiplication by {02} in GF 

(28) can be implemented at byte level with a left shift followed by a conditional bitwise XOR 

with {1b}. Mul-tiplication by larger coefficients can be implemented with repeated 

multiplications by {02} and XORs with previously calculated results. 

2.2     32-bit Implementation Strategies 

On 32-bit processors byte-level operations can be done in parallel. In particular, the bytes 

within a column can be multiplied by {02} in parallel, and we will refer to this operation as 

the Xtime operation. Several efficient imple-mentations of the Xtime operation have been 

described by Brian Gladman in [17]. 

The original Rijndael submission defines two main imple-mentation strategies. The first 

strategy, which we will call Version 1 (V1), employs byte substitution tables only (Sbox and 

InvSbox). The second strategy, which we will call Ver-sion 2 (V2), employs additional 

encryption/decryption ta-bles in order to avoid the software computation of (1). Ver-sion 1 

implements the nonlinear layer using byte substitu-tion tables and implements the 

MixColumn transformation making repetitive calls to the Xtime operation. Version 2, on the 

other hand, combines the nonlinear layer, and the linear mixing layer within 4 table lookups, 

3 XORs and 3 rotates allowing very fast implementations on 32 bit processors. 

The third strategy proposed recently by Bertoni et al. in [12], like Version 1, employs the 

nonlinear byte substitution tables only, however transposes the state array before ap-plying 

the round transformations, and transposes again at the end. In this way, considerable amount 

of computation is saved in the implementation of the MixColumn and Inverse 

MixColumn (InvMixColumn) transformations, resulting in higher performance than V1 in 

general but maintaining the same low memory requirements. We will refer to this strat-egy as 

the Transposed State Version (V1T). 

The look-up tables used by the three described strategies are given in Table 1, and the sizes of 

the different look-up tables are given in Table 2. The use of pre-rotated encryp-tion and 

decryption tables, and word extended byte sub-stitution tables has also been proposed, 

respectively in the Rijndael submission and in [17] by Brian Gladman. These optimisations 

can eliminate a number of shifts and rotates on some architectures, and can be considered 

among other implementation strategies. 
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3. OPTIMISATIONS FOR ARM PROCES-SORS 
ARM is the leading provider of 32-bit embedded RISC mi-croprocessors with almost 75% of 

the market. ARM offers a wide range of processor cores based on a common architec-ture [9] 

[4], delivering high performance together with low power consumption and system cost. 

ARM processors implement a load/store architecture. De-pending on the processor mode, 15 

general purpose registers are visible at a time. Almost all ARM instructions can be executed 

conditionally on the value of the ALU status flags. Load and store instructions can load or 

store a 32-bit word or an 8-bit unsigned byte from memory to a register or from a register to 

memory. 

The ARM arithmetic logic unit has a 32-bit barrel shifter that is capable of shift and rotate 

operations. The sec-ond operand to all ARM data-processing and single register data-transfer 

instructions can be shifted before data process-ing or data transfer is executed, as part of the 

instruction. The amount by which the register should be shifted may be contained in an 

immediate field in the instruction, or in the bottom byte of another register. When the shift 

amount is specified in the instruction, it may take any value from 0 to 31, without incurring 

any penalty in the instruction cycle time. 

Use of word extended substitution tables in Rijndael im-plementations is unnecessary and 

inefficient on ARM proces-sors, since the architecture supports load byte instructions. Use of 

pre-rotated tables cannot improve the performance neither, since the barrel shifter that can be 

combined with data processing instructions reduces the effective cost of ro-tate instructions to 

zero. Use of such tables, in fact, in-creases the register pressure and possibility of cache 

misses, therefore degrading the performance. We will consider only V1, V2 and V1T 

described in Sect. 2.2 in the rest of this paper. 

3.1 The Proposed Mix Column Implementation  

The MixColumn implementation described by Gladman [17] in V1 requires 4 XORs, 3 

rotates and one Xtime opera-tion, incurring 16 XORs, 12 rotates and 4 Xtime operations per 

AES round. 

V1T by Bertoni et al. [12] eliminates the rotations, and requires 16 XORs and 4 Xtime 

operations per AES round. In fact, the advantage of using a transposed state is more evident 

in the decryption operation, because the InvMixCol-umn operation sees an important 

reduction in the number of XORs and Xtime operations. 
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We describe here a new MixColumn implementation that requires 3 XORs, 3 rotations and 

one Xtime, incurring 12 XORs, 12 rotations and 4 Xtime operations per AES round. 

However, using the ARM barrel shifter, the 12 rotations can be combined with 12 XORs 

without any penalty, resulting in 12 XORs and 4 Xtime operations effectively per round. The 

proposed MixColumn implementation, in addition to cutting down the number of logical 

operations, can support all block lengths multiples of 32-bits, unlike the Transposed State 

Version, which requires a State matrix of 128-bits. 

Assuming that b = (b0, b1 , b2, b3 ) is the input column to be transformed, s and t are two 32-

bit temporary variables, and c = (c0 , c1 , c2 , c3 ) is the result, the four steps of the 

MixColumn transformation are given as follows, where EOR is the ARM instruction for 

XOR, and ROL is the rotate left command for the barrel shifter: 
1. EOR  s,  b,  b  ROL  8   

 s0  = b0  ⊕ b1 ,       s1  = b1  ⊕ b2 
 s2  = b2  ⊕ b3 ,       s3  = b3  ⊕ b0 
2. EOR  t,  s,  b  ROL 16   

 t0 = b0  ⊕ b1  ⊕ b2 t1 = b1  ⊕ b2  ⊕ b3 
 t2 = b2  ⊕ b3  ⊕ b0 t3 = b3  ⊕ b0  ⊕ b1 
3. s  =  Xtime(s)    

 s0 = {02} ₃ (b0  ⊕ b1)     s1 = {02} ₃ (b1  ⊕ b2 ) 
 s2 = {02} ₃ (b2  ⊕ b3)     s3 = {02} ₃ (b3  ⊕ b0 ) 
    
4. EOR  c,  s,  t  ROL  8  

c0 = {02} ₃ (b0 ⊕ b1 ) ⊕ b1 ⊕ b2 ⊕ b3 c1 = {02} ₃ (b1 ⊕ b2 ) ⊕ b2 ⊕ b3 ⊕ b0 c2 = {02} ₃ (b2 ⊕ 
b3 ) ⊕ b3 ⊕ b0 ⊕ b1 c3 = {02} ₃ (b3 ⊕ b0 ) ⊕ b0 ⊕ b1 ⊕ b2   

 
The  final  result  is  equivalent  to  (1). 

4. A CASE STUDY ON INTEL STRONG-ARM SA-1110 

MICROPROCESSOR 
The Intel StrongARM SA-1110 Microprocessor (SA-1110) is a highly integrated 32-bit RISC 

microprocessor that incor-porates Intel design and process technology along with the power 

efficiency of the ARM architecture [10] [7]. The SA-1110 implements the ARM V4 ISA, 

together with a Harvard architecture memory system. There are separate instruc-tion and data 

caches. The instruction and data streams are translated through independent memory-

management units (MMUs) [6]. The 16 Kbytes Icache has 512 lines of 32 bytes (8 words), 

arranged as a 32-way set associative cache. There are two logically separate data caches: the 

main data cache and the mini data cache (minicache). The main data cache, an 8 Kbyte write-

back Dcache, has 256 lines of 32 bytes (8 words) in a 32-way set-associative organization. 
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Table  3:  Number  of  clock  cycles,  128-bit  key  length 

 

Version Enc.  cycles Dec.  cycles 
V1 1020 1605 
V1T 1033 1312 
Proposed 943 1605 

 

The mini-cache provides a smaller and logically separate data cache that can be used to 

enhance caching performance. The mini-cache is a 512-byte write-back cache having 16 lines 

of 32 bytes (8 words) in a two-way set-associative organization. The Dcaches are accessed in 

parallel and the design ensures that a particular line entry will exist in only one of the two at 

any time. Both Dcaches use the virtual address generated by the processor and allocate only 

on loads according to the set-tings of certain bits in the MMU translation tables. Stores are 

made using a four-line write buffer. The performance of specialized load routines is enhanced 

with the four-entry read buffer that can be used to prefetch data. The Stron-gARM pipeline 

has 5 stages: fetch, decode, execute, buffer and writeback. Most instructions normally spend a 

single cycle in each stage. The StrongARM core contains a num-ber of result bypasses. These 

normally allow the processor to use the results of one instruction in the following instruc-tion 

as soon as it has been generated. In particular, almost every instruction can read its inputs 

from the bypasses as it enters the execute stage if these inputs are not yet in the register file in 

the decode stage. 

4.1     Performance Figures 

We worked with Intel StrongARM SA-1110 Microproces-sor Development Board, Hardware 

Build Phase 5. We used ARM Developer Suite (ADS) Version 1.1 and Angel Version 1.2 

Revision 2.08a as the development software. 

We implemented in C the three strategies explained in Sect. 2.2. We unrolled the loops that 

implement the series of round transformations by one, and we kept the State array explicitly 

in registers. We applied the standard techniques described in [8] in order to optimise the 

machine codes gen-erated by the ARM compiler. We calculated the clock cycle information 

reading the Operating System Timer clocked by the 3.6864 MHz oscillator, that also feeds 

the CPU phase-locked loop (PLL). In order to remove the effects of initial cache misses, we 

made a large number of consecutive en-cryptions or decryptions on random input blocks, and 
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we took the averages. 

Performance figures with 128-bit key length based on the three MixColumn implementations 

described in Sect. 3.1 are given in Table 3. We underline the fact that in Table 3 we compare 

the speed of compact implementations, i.e. we exclude V2 because its code does not carry out 

the MixCol-umn step; in V2 the Mixcolumn operation is hardwired in the bigger look-up 

tables. 

The experimental results are parallel to the theoretical claims: encryption with the proposed 

MixColumn imple-mentation is the fastest. V1T encryption is slightly slower than V1 

encryption due to the initial and the final trans-positions on the State matrix. Instead, V1T is 

winning in decryption. We conclude that the best compact implementation is obtained 

combining proposed encryption code and V1T decryption code; we will refer to this version 

as BC. 

A comparison of performances between BC and V2 is given in Table 4 for different key 

lengths. The results show that V2 is the fastest implementation on the processor, both for 

encryption and decryption. We note here that the per-formance figures of V2 compare well 

with the StrongARM results given in [3]. However, an exact comparison has not been 

possible, since the development platform and the spe-cific processor are not specified in the 

latter case. 

Table 4: Number of clock cycles for different key lengths 

Version 
Key  

length Encryption Decryption 
 128-bit 943 1312 
BC 192-bit 1119 1559 
 256-bit 1295 1806 
 128-bit 659 638 
V2 192-bit 767 766 
 256-bit 875 874 

 

4.2     Memory Requirements 

The three different versions have different memory re-quirements. V1 and V1T employ only 

byte substitution ta-bles, whereas V2 employs additional encryption/decryption tables. It is 

clear that V2 requires more data memory com-pared with V1 and V1T. However, use of the 

look-up tables reduces its code size. Table 5 summarizes the memory re-quirements for the 

different versions, containing the code for keyschedule for the three different key lengths, the 
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code for encryption and the code for decryption; RO stands for read only and ZI stands for 

zero initialised. 

Table 5: Memory requirements for different versions in bytes 

Version Code RO  Data ZI  Data Total 
V1 3620 522 248 4390 
V1T 4440 522 248 5210 
V2 3148 2570 248 5966 

 

V2 again has the largest memory requirements, when code and data are considered together, 

and V1 is the most com-pact implementation. Although V1T uses the same look-up tables as 

V1, it has larger memory requirements; this can be explained by the fact that it requires a 

more complex key schedule, which increases its code size. 

4.3 The Mini-cache Solution and Effects of Cache Misses  

The mini data cache, having a size of 512 bytes, is an ideal place to lock the byte substitution 

tables used by all candidate implementations. By manipulating memory man-agement 

translation tables, it is possible to assign the sub-stitution tables to the mini data cache, and all 

the other data area to the main data cache [5].  

Table 6: Effects of the Mini-cache use on the per-formance, clock cycles, 128-bit key 

length 

Version Operation 
With  
MC 

Without  
MC 

V1 keysch.  +  1  enc. 3877 4204 
V2 keysch.  +  1  enc. 4355 4734 
V1T keysch.  +  1  dec. 4719 5365 
V2 keysch.  +  1  dec. 5614 6215 

 

This ensures that there will be no interference by other data structures, or other applications 

on the mini-cache, and once loaded, sub-stitution tables will always remain there. When there 

is an operating system running on the platform, resulting in fre-quent context switches, or 

when the number of consecutive encryptions or decryptions are small and must be succeeded 

(or preceded) by other applications, cache interference can present significant penalties on 

AES performance. 

We tried to reduce this penalty by making use of the SA-1110 mini-cache. Table 6 describes 

the effects of the mini-cache use on the performance with the instruction cache and the main 

data cache initially empty. According to Table 6 results, a reduction of 8 to 12 percent in the 
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number of clock cycles can be obtained with a single keyschedule and a single encryption or 

decryption by making use of the mini-cache. The improvement is more significant for 

decryption since it makes use of both Sbox and InvSbox (Sbox in keyschedule). Each byte 

substitution table, having a size of 256 bytes, oc-cupies 8 cache blocks with proper 

alignment. Keeping them in the mini-cache, 8 cache misses are saved for encryption and 16 

cache misses are saved for decryption. However, the performance figures are still quite far 

from those given in Sect. 4.1. The reason is the instruction cache misses, which cannot be 

avoided in any way. The improvement due to the mini-cache is still convincing. 

Another observation that can be made from Table 6 is that V2 encryption requires more clock 

cycles than V1 en-cryption, and V2 decryption requires more clock cycles than V1T 

decryption in case of a single encryption or decryp-tion. This is expected, since V2 is subject 

to additional data cache misses due to the encryption/decryption tables it uses. Moreover, V2 

decryption keyschedule is more complex than others as it requires additional InvMixColumn 

transforma-tions applied on the expanded key. However, as the number of encryptions or 

decryptions are increased, we would ex-pect the speed of V2 to compensate for the cache 

miss or keyschedule overheads at some point. 

Table 7 shows that V2 encryption is faster than BC en-cryption only if the number of 

consecutive encryptions is larger than 2. The decryption results, shown in Table 8, are 

similar: V2 decryption is faster than BC decryption when the number of consecutive 

decryptions is larger than 2. 

We conclude that, for a particular application encrypting or decrypting messages smaller than 

or equal to 2 blocks (32 bytes) at a time and subject to cache block replacements between two 

executions, it is better strategy to use version BC instead of V2, not only from the memory 

requirements point of view, but also considering performance. 

We may add that a reduction in the number of clock cycles probably lead also to a reduction 

in energy consumption, although we did not make such measurements. The use of BC is thus 

recommended in several use-cases, such as: 
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Table 7: BC encryption vs V2 encryption, clock cy-cles, 128-bit key length, substitution 

tables in mini-cache 

Operation BC V2 
keysched.  +  1  enc. 3877 4355 
keysched.  +  2  enc. 4831 5021 
keysched.  +  3  enc. 5796 5680 
keysched.  +  4  enc. 6712 6328 

 

Table 8: BC decryption vs V2 decryption, clock cy-cles, 128-bit key length, substitution 

tables in mini-cache 

Operation BC V2 
keysched.  +  1  dec. 4719 5614 
keysched.  +  2  dec. 6027 6229 
keysched.  +  3  dec. 7390 6882 
keysched.  +  4  dec. 8691 7507 

 

• The case when the running application must encrypt or decrypt and send the value of 

some counters or some flags, for the purpose of getting synchronized with a remote 

host.  

• The case when data to be sent over an encrypted con-nection consist of key strokes from 

the keyboard or from dedicated pads (very common when using remote shells or 

interfaces)  

• The case when small data from sensors must be pe-riodically sent to a sink, and other 

applications are running on the device.  

5 CONCLUSIONS  
In this work, the peculiarities of the common ARM ISA suited for AES are identified and 

appropriately exploited. A new implementation for the encryption linear mixing layer is 

formulated, which enhances the performance of AES on all ARM cores. The new 

implementation is the most compact implementation, preserves the flexibility of Rijndael and 

ex-hibits the highest encryption performance on ARM proces-sors, compared with similar 

implementations claiming low memory use. It exploits the ISA features of ARM by effi-

ciently rearranging some operations and reducing their num-ber. 

A case study on Intel StrongARM SA-1110 microproces-sor presents the performance figures 

for different candidate implementations and some ways of improving the perfor-mance by 
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exploiting memory hierarchies and cache lock-ing strategies. Moreover, the case study 

demonstrates that the most compact implementations are also the fastest ones when there is 

potential cache interference, and identifies the smallest number of consecutive 

encryptions/decryptions that make implementations using additional look-up tables 

advantageous over the more compact ones on the specific architecture. 
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