Minimum Distance of Cyclic Codes

Dr. M. Mary Jansi Rani1
Head and Assistant Professor,
Department of Mathematics,
Thanthai Hans Roever College, Perambalur.

ABSTRACT In this paper introduce the nature of minimal prime ideal in R_n and observe that as n ∈ Z has only a finite number of prime divisors, the ideal (n) in Z has only a finite number of minimal prime ideals.

Keywords Minimal prime ideal in R_n, Prime divisors, Reduced modulo, Cyclic complement, Primitive element, Linear factor, BCH code.

1. Introduction

Let C be a cyclic order in R_n, then there exists a unique idempotent e(x) ∈ C such that C = ⟨e(x)⟩. Further if e(x) is an idempotent in C, then C = ⟨e(x)⟩ if and only if e(x) is a unity element of C was introduced in [1]. Let C be a cyclic code over F_q with generating idempotent e(x). Then the generating polynomial of C is g(x) = gcd (e(x), x^2-1) computed in F_q[x] and also discussed property of minimal ideals of R_n.

In [4] produced some properties of commutative ring R with unity, every maximal ideal is a prime ideal and also every proper ideal of the ring R possesses at least one proper ideal. In this chapter introduce the nature of a minimal prime ideal in R_n and observe that finite number of minimal prime ideals.

2. Preliminaries

Definition 2.1 Let R_n be a commutative ring with unity. An ideal P of R is called a prime ideal if for all a,b ∈ R_n, ab ∈ P implies that either a ∈ P or b ∈ P.

Example 2.1.1 Let Z be a ring of integer, we consider the ideal [P] generated by a prime. If for a,b ∈ Z, ab ∈ [P], then a ∈ [P] or b ∈ [P].

As R_n is principal ideal domain and finitely generated each ideal of R_n is contained in a minimal ideal. So every proper code C of R_n is contained in a minimal code say C_m. In [9] the authors give property of minimal ideal of R_n.

Fact 2.1 In a commutative ring R with unity, every minimal ideal is a prime ideal in [4].

Fact 2.2 Let I be a proper ideal of a commutative ring with unity then I is a minimal ideal if and only if R \ I is a field in [4].

Definition 2.5 Let R be a commutative ring with unity, let I be a proper ideal of R. A prime ideal P of R is said to be a minimal prime ideal of I if I ⊆ P and there exists no prime ideal P’ of R such that I ⊆ P’ ⊆ P.

The minimal prime ideals of the zero ideal (0) are called minimal prime ideals of R.

Definition 2.6 A prime ideals P of R is called a minimal prime ideal(R) if it does not contain any other prime ideal ≠ (0).
We observe that as \(n \in \mathbb{Z} \) has only a finite number of prime divisors, the ideal \((n) \) in \(\mathbb{Z} \) has only a finite number of minimal prime ideals.

Fact 2.3 (Correspondence theorem) Let \(f \) be a homomorphism from a ring \(R \) into a ring \(R' \). Then there is a one-one correspondence between the ideals of \(R \) and of \(R' \) s.t. \(\ker f = I \) if and only if \(f(I) \) is an ideal of \(R' \). For proof see in [4].

Corollary Fact 2.3 Given an ideal \(I \) of \(R \), there is a canonical homomorphism of \(R \) onto \(R/I \) defined by \(r \mapsto r + I \). That is every ideal in \(R/I \) is of the form \(J/I \) where \(J \) is an ideal of \(R \) containing \(I \).

In other words we describe if \(\text{it Fact 2.3} \) Let \(I \) be an ideal of a ring \(R \) then there is a one-one correspondence between the set of all ideals of \(R \) which contain \(I \) and the set of ideals of \(R/I \) given by \(J \mapsto J/I \). That is every ideal in \(R/I \) is of the form \(J/I \) where \(J \) is an ideal of \(R \) which contains \(I \).

Next, we consider \(R_n \), the ideals of \(R_n \) are of the form \(\alpha \pi_q[x] / (x^n - 1) \) where \(\alpha \pi_q[x] / (x^n - 1) \) is a P.I.D. Further \(\deg f(x) \leq (n-1) \). We consider the irreducible divisors of \(x^n - 1 \). Let \(p(x) \) be an irreducible divisor of \(x^n - 1 \). Let \(p(x) \) be an irreducible divisor of \(x^n - 1 \), \(I = (x^n - 1) \) is contained in \((p(x)) \) further \((p(x)) \) is a prime ideal of \(F_q \). Therefore, the ideal \(J = (p(x)) \) is a prime ideal of \(F_q[x] \). If \(a(x) b(x) \in J \), then either \(a(x) \in J \) or \(b(x) \in J \).

Theorem 2.1 Let \(\lambda > 2 \), if \(\lambda \) is the number of irreducible factors of \(x^n - 1 \), then there are \(\lambda \) minimal ideals of \(R_n \).

Proof Let \(p(x) \) be an irreducible divisor of \(x^n - 1 \). Then \(p(x) \) is a prime ideal of \(\pi_q[x] / (x^n - 1) \). There is an ideal \(I = (x^n - 1) \) in \(\pi_q[x] / (x^n - 1) \) such that \(\ker f = I \) if and only if \(\ker f = I \).

Claim Let \((p(x)) / (x^n - 1) \) be a minimal prime ideal of \(\pi_q[x] / (x^n - 1) \). For if \(a(x) b(x) \in p(x) \) either \(a(x) \in b(x) \) or \(b(x) \in p(x) \). We assume that \(a(x) b(x) = p(x) \), in the sum \((p(x) + (x^n - 1)) \) the element corresponding to \(a(x) b(x) \) is \(a(x) b(x) + (x^n - 1) \), when \(a(x) b(x) \) is reduced modulo \((x^n - 1) \),

when \(\lambda > 2 \), \((a(x) b(x)) \) is less than \(x \), further we note that since \((p(x)) \) is a prime ideal, either \(a(x) + (x^n - 1) \) or \(b(x) + (x^n - 1) \) is an element of \((p(x))/ (x^n - 1) \). So, the ideal \((p(x))/ (x^n - 1) \) corresponds to a prime ideal of \(F_q[x] / (x^n - 1) \). As there is no proper ideal between a maximal ideal of \(R \) and the ring \(R_1 \) there is ideal \(Q \) such that \(p(x) / (x^n - 1) \) in \(R_1 \). That is \((p(x))/ (x^n - 1) \) is a minimal prime ideal of \(F_q[x] / (x^n - 1) \).

2. **Cyclic Complement of a Cyclic Code**

Given two codes \(C_1 \), \(C_2 \) over \(F_q \), we define the sum \(C_1 + C_2 \) of two codes to be \(C_1 + C_2 = \{ c_1 + c_2 \mid c_1 \in C_1, c_2 \in C_2 \} \).

Definition 3.1 If \(C \) is a linear code of length \(n \) over \(F_q \), then a complement \(C^c \) of \(C \) is defined by the relations \(a \cdot C + C^c = F_q^n \), \(b \cdot C \cap C^c = \{0\} \). In general the complement \(C^c \) is not unique.

Fact 3.1 In [9] Let \(C \) be a cyclic code of length \(n \) over \(F_q \) with generator polynomial \(g(x) \) generating idempotent \(e(x) \) and defining the set \(T \). Let \(C^c \) be the cyclic complement of \(C \). Then

i) \(h(x) = \frac{x^{n-1}}{g(x)} \) is the generator polynomial of \(C^c \) and \(1 - e(x) \) is its generating idempotent.
ii) If \(S = \{ 0, 1, 2 \ldots \ldots (n-1) \} \), then show that is the defining set of \(C^c \).

By recall the defining set of \(C \), We have seen that

\[
g(x) = \prod \alpha \ s(x) = \prod \prod_{\epsilon \in C} (x - \alpha^\epsilon)
\]

where \(\alpha \) is a primitive \(n^{th} \) root of unity contained in \(\mathbb{F}_{q^t} \), a splitting field of \((x^n-1) \). Let

\[
(x^n-1) = \prod_{\alpha \in \mathbb{F}_{q^t}} (x - \alpha^\epsilon)
\]

is the function of \((x^n-1) \) into linear factor over \(\mathbb{F}_q \).

Next we look at the linear code of length \(n \) over \(\mathbb{F}_q \) as the subspace of \(\mathbb{F}_q \).

Fact 3.2 Let \(V \) be a finite dimensional vector space over a field \(F \). we take \(\dim V = X \). Let \(W \) be finite dimensional vector space of dimension \(m \) over \(F \). If \(T : V \rightarrow W \) is a linear transformation then the rank-nullity theorem says that \(\dim (\ker T) + \dim(T) = \dim V = n \). Further if \(W \) is a subspace of \(V \) then \(W \) is finite dimensional \(\dim W \leq \dim V \) and \(\dim(V/W) = \dim V - \dim W \) where \(V/W \) denotes the quotient space of \(V \) by \(W \) meaning that we consider the quotient space of the abelian group \(V \) by the subgroup \(W \). Therefore a canonical linear transformation \(r \) from \(V \) onto \(V/W \) defined by \(r(V) = V + W \) where \(V \) belongs to the coset of \(V \) \(\ker r = W \). we apply this fact to \(\mathbb{F}_{q^n} \). \(\mathbb{F}_{q^n} \) is a vector space of dimension \(n \) over \(\mathbb{F}_q \). Let \(C \) be the linear code of dimension \(k \) over \(\mathbb{F}_q \). The canonical linear transformation \(r : \mathbb{F}_{q^n} \rightarrow \mathbb{F}_{q^n}/C \) yields that \(\dim (\mathbb{F}_{q^n}/C) = \dim \mathbb{F}_{q^n} - \dim C = x - k \).

Theorem 3.1 Let \(C^c \) be the complement of a cyclic code \(C \), then \(C^c \cong \mathbb{F}_{q^n}/C \).

Proof Let \(k \) be a dimension of the cyclic code

\[
\dim(\mathbb{F}_{q^n}/C) = \dim(\mathbb{F}_{q^n}) - \dim C
\]

\[= x - k\]

Since any two finite dimensional vector space \(V \) and \(W \) having the same dimension are isomorphic and since \(\dim C = x - k \), \(C^c \cong \mathbb{F}_{q^n}/C \).

3. Minimum Distance of a Cyclic Code

Given a cyclic code \(C \) of length \(x \) over \(\mathbb{F}_q \), \(C \) possesses a definite set \(T \). BCH bound says that if \(T \) contains \(\delta - 1 \) consecutive elements for some integer \(\delta \), then \(C \) has a minimum distance \(d \) satisfying \(d \geq \delta \). since defining set \(T \) depends on the primitive element \(\alpha, \beta = \alpha^s \) where \(\text{g.c.d} (a,n) = 1 \) where \(\beta \) is also primitive \(n^{th} \) root of unity. If \(a^i \) is the multiplicative inverse of \(a \) (mod \(n \)), the minimal polynomials \(M_{\alpha^i}(X) \) and \(M_{\beta^{-1}}(X) \) are equal. So the code with defining set \(T \) is the same as the code with defining set \(a^{-1} T \) modulo relative to the primitive element \(\beta \). While applying the BCH bound a higher lower bound may be obtained, if we apply a multiplier to the defining set.

The Hartmann Tzeng bound says that if \(A \) denotes a set \(\delta - 1 \) consecutive elements of \(T \) and \(B = \{ j \mod n \} \) where \(0 \leq j \leq s \) where \(\text{g.c.d} (b, x) < \delta \) the minimum weight \(d \) of \(C \) satisfies \(d \geq \delta - s \) provided \(A + B \leq T \).

Theorem 3.1 Let \(C \) be a cyclic code of length \(n \) over \(\mathbb{F}_q \) with defining set \(T \). Let \(A \) be a set of \(\delta - 1 \) consecutive elements of \(T \). Let \(B = \{ j \mid s \} \mod n \}. \) If \(A + B \leq T \), the minimum weight \(d \) of \(C \) satisfies \(d \geq \delta + | B | \) where \(| B | \) denotes the number of elements of \(B \).
Proof: This is a particular case of Hartmann-Tzeng bound where \(B = \{ jb \mod n \} \) with \(\gcd(b,n) < \delta \) here \(b = 1 \). Further \(S \setminus T \) is the defining set of \(C \). As \(| B | \geq 1, d \geq \delta + 1 \) which in the case of \(S = 1 \) in Hartmann-Tzeng bound proof follows on lines of proof given in [9].

Example 3.3.1 Let \(C \) be a binary cyclic code of length 17 with defining set
\[
T = \{1,2,4,8,9,13,15,16\}
\]
there are two consecutive elements 8, 9 or 15,16 we take
\[
A = \{8,9\}
\]
we look for these values of \(j \) for which \(A+B \subseteq T \) \(S \setminus T = B = \{0,3,5,6,7,10,11,12,14\} \) \(A = \{8,9\} \)
- \(j = 0 \) \(A+B \subseteq T \)
- \(j = 3 \) \(A+B = \{11,12\} \not\subseteq T \)
- \(j = 5 \) \(A+B = \{13,14\} \not\subseteq T \)
- \(j = 6 \) \(A+B = \{14,15\} \not\subseteq T \)
- \(j = 7 \) \(A+B \) Not ok
- \(j = 10 \) \(A+B = \{1,2\} \subseteq T \)
- \(j = 11 \) \(A+B = \{2,3\} \) Not ok
- \(j = 12 \) \(A+B = \{3,4\} \) Not ok
- \(j = 14 \) \(A+B = \{5,6\} \) Not ok. The number of values of \(j \) satisfying \(A+B \subseteq T \) is 2. Therefore \(d \geq 3+2 = 5 \) it is known that \(d = 5 \).

Reference