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ABSTRACT 

 Frequent itemset mining leads to the discovery of associations among items in large 

transactional database. The apriori algorithm adopts candidate generation and testing which 

is easy to implement but candidate generation and support counting is very expensive in this. 

In the fp-growth, there is no candidate generation and requires only 2 passes over the 

database but in this fp-tree is very expansive to built and support is counted only when entire 

dataset is added to fp-tree. In this paper, I introduce enhancedfp which does its work without 

prefix tree or any other complicated data structure and there is no re-representation of 

transaction is necessary. Finally I compare the performance of enhancedfp with fp-growth 

and apriori. 
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I. INTRODUCTION 
Association rule mining searches [2] for relationships between items in a dataset. It finds 

association among set of items in transactional database. Each transaction is a list of items. 

Association rules is in form A⇒B which means customer buys A also tends to buy B. To 

mine association rule, basic concepts of support and confidence are needed. Support s is the 

probability that a transaction contain (X, Y).Confidence C is the measure of the strength of 

the association rule, suppose the confidence of the association rule x⇒y is 90%, it means that 

90% of the transactions that contain X also contain Y together. Also minimum support and 

minimum confidence is needed to eliminate the unimportant association rules. Such that the 

association rules is hold when it is greater than the minimum support and minimum 

confidence. 

T_id items 

100 a,b,c 

200 a,c 

300 a,d 

400 b,e,f 

 

Equation for support and confidence: 

Support (A⇒ B) =Probability (A∩B). 

Confidence (A⇒B) =Probability (B/A). 

 

Let the min_support and min_confidence are 50%.for association rule a⇒c, support (a, c) 

=2/4*100%=50%.Confidence=Support (a, c) 

/Support (a) =50%/75%=66.6%, means that customer buys a also have 66.6% chance to buy 

c. In this paper on the basis of study of the existing data mining algorithm apriori and fp-

growth and according to disadvantage of them in transactional database, an enhancedfp  is 

presented the enhancedfp avoids the problem of complex data structure and the experiments 

results shows that the performance of the enhancedfp is better than fp-growth and apriori. 

II. APRIORI ALGORITHM 
The apriori algorithm is firstly purposed by R.aggrwal and R.srikant [6] in 1994 for mining 

frequent itemset. . Apriori has monotonicity property which states-all non-empty subsets of a 

frequent itemset must also be frequent Apriori algorithm contains a number of passes over the 
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database .In this firstly the algorithm scan the database to find the set of frequent 1-itemset 

and do count for each item and collecting those items that  satisfy the minimum _support.   

The resulting set is denoted by L1.Next L1 is used to find L2(frequent 2-itemset) which is 

used to  find L3 and so on, until no more frequent k-itemsets can be found. The finding of 

each k requires on full scan of a database. 

ADVANTAGES: 

1.  Use large itemset. 

2.  Easy to implement. 

3.  Easily parallelized. 

DISDVANTAGE: 

1.  It may need to generate a huge no of candidate sets. So its generation is expensive. 

2.  Assumes transactional database is memory resident. 

3.  Support count is expensive because require many database scan.  

III. FP-GROWTH 
FP-GROWTH approach is based on divide and conquers strategy for producing the frequent 

itemsets. It reduces the multiple scan over database Fp-growth is mainly used for mining 

frequent itemsets without candidate generation. 

Major steps in Fp-growth is- 

Step1- It firstly compresses the database showing frequent itemset in to Fp-tree .Fp-tree is 

built using 2 passes over the dataset.  

First pass: frequent 1-itemset is same as in apriori frequent1-itemset. 

Second pass: in this pass, the fp-tree is constructed. Nodes show the items and each node a 

counter. Each transaction is processed in descending order &creates a branch for each 

transaction. Fp reads one transaction at a time. When the transactions shares the same items 

(have same prefix).The path can overlap & counters are incremented. Pointers are maintained 

between nodes contains the same item, creating singly linked list {dotted lines).more the 

overlap more the compression 

Step2: It divides the Fp-tree in to a set of conditional database and mines each database 

separately, thus extract frequent itemsets from Fp-tree directly. 

ADVANTAGES: 

1. It compresses the database. 

2. Require only 2 pass over database. 

3. There is no candidate generation. 
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4. Faster than apriori. 

5. Reduces search cost 

DISADVANTAGE: 

1. It may not fit in main memory. 
2. FP tree is expensive to build. 

I) takes time to build but once built frequent itemset can be obtained easily. 

II) Support can only be calculated once the entire dataset is added to fp-tree. 

IV. ENHANCEDFP 
As the major disadvantage of fp-growth is construction of fp-tree as it takes a lot of time to 

build and also expensive to built. Enhanced fp does its work without any complicated data 

structure, processing the transactions directly. Its main strength is simplicity of its structure. 

In this all the work is done in one simple recursive function. Enhancedfp is based on a step by 

step elimination of items from the transaction database together with a recursive processing 

of transaction subsets.  

Preprocessing of transactional database 

Supports of the items are determined in initial scan. All the items whose support is less than 

the predefined minimum support are discarded from the transaction because they all are 

infrequent items. All the items in each transaction are sorted in ascending order w.r.t to their 

support in the database. Suppose the transactional database is: 

a  d 

a c d e 

b d 

b c d g 

b c f 

a b d 

b d e 

b c d e 

b c  

a b d f 

Suppose the predefined minimum support is 3. 
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g 1 

f 2 

e 3 

a 4 

c 5 

b 8 

d 8 

 

The items g and f is discarded because their support is less than minimum support. 

Transaction sorted lexicographically in descending order.  

a d                              e a c d 

e a c d                         e c b d 

b d                              e b d  

c b d                           a b d 

c b                              a b d 

a b d                           a d 

e b d                           c b d 

e c b d                        c b 

c b                              c b 

a b d                           b d 

 

Each transaction is represented as a simple array of item identifiers. The transaction database 

is changed into a set of transaction lists, with one list for each item. Each element of which 

contains a support counter and a pointer to the head of the list. The list elements themselves 

consist only of a successor pointer and a pointer to the transaction. The transactions are 

inserted one by one into this structure by simply using their leading item as an index. 

However, the leading item is removed from the transaction, that is, the pointer in the 

transaction list element points to the second item. 
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Before a transaction list is processed, however, its support counter is checked, and if it 

exceeds the user-specified minimum support, a frequent item set is reported consisting of the 

item associated with the list and a possible prefix associated with the whole list array. 

Single transaction list is processed as follows: for each list element the leading item of its 

transaction is retrieved and used as an index into the list array; then the element is added at 

the head of the corresponding list. In such a reassignment, the leading item is also removed 

from the transaction, which can be implemented as a simple pointer increment. In addition, a 

copy of the list element (with the leading item of the transaction already removed by the 

pointer increment) is inserted in the same way into an initially empty second array of 

transaction lists. 

Since the elements of a transaction list all share an item, this second array collects the subset 

of transactions that contain a specific item and represents them as a set of transaction lists. 

This set of transaction lists is then processed recursively. After the recursion the next 

transaction list is reassigned, copied, and processed in a recursive call and so on. a list 

element representing a transaction that contains only one item is neither reassigned nor 

copied, because the transaction would be empty after the removal of the leading item. Instead 

only the counter in the lists array element is incremented as an indicator of such list elements.  

ADVANTAGES 

1. Simple data structure and processing scheme. 

2. Fastest than apriori and fp-growth.     

V. EXPERIMENTAL RESULTS 
T40I10D100k is synthetic data resemble market basket data with short frequent patterns.  

Pumsb is a real dataset contains census data for population and housing. Mushroom is real 

data which are dense in long frequent patterns. All the implementations is done in c and 

compiled in Visual C++. All experiments are performed on 2.60GHZ Pentium [R] Dual-Core 

CPU with 0.99 GB of memory, running Microsoft Windows XP Professional Version 

2002.All times shown include time for outputting all the frequent itemset. 
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Results of apriori,fp-growth and enhancedfp on  mushroom.dat. 

 

                                
Figure 1 

Results of apriori, fp-growth and enhancedfp on pumsb.tab. 

 
Figure 2 

Results of apriori,fp-growth and enhancedfp on T40I10D100K.dat. 

                                  
Figure 3 

I run implementations of apriori,fp-growth and enhancedfp on three datasets 

mushroom,pumsb andT40I10D100K. Fig.1 to Fig3 shows the execution time of 
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implementations over the various support.The blue line refers to apriori algorithm.The red 

line refers to fp-growth algorithm.The green line refers to enhancedfp. 

 

Figure1. Shows the running time of the compared algorithms on mushroom data with 

different minimum supports represented by percentage of the total transactions. Under large 

minimum supports, enhancedfp run faster than fp-growth and aprirori as well as under small 

minimum supports. Thus on the dataset mushroom performance of enhancedfp is better than 

apriori,fp-growth. 

 Figure2. Shows the running time of the compared algorithms on pumsb data with different 

minimum supports represented by percentage of the total transactions. Under large minimum 

supports, enhancedfp run faster than fp-growth and aprirori, while under small minimum 

supports performance of apriori is better. Thus on the dataset pumsb performance of 

enhancedfp is better than apriori,fp-growth 

Figure3. Shows the running time of the compared algorithms on T40I10D100K data with 

different minimum supports represented by percentage of the total transactions. Under large 

minimum supports, enhancedfp run faster than fp-growth and aprirori as well as  

under small minimum supports. Thus on the dataset T40I10D100K performance of 

enhancedfp is better than apriori,fp-growth 

VI. CONCLUSION 
In this paper I introduced enhancedfp,which does its work without any complex data 

structure.By comparing it to frequent itemset mining algorithms apriori and fp-growth the 

strength of enhancedfp is analyzed. As the 

Experimental results show,this implementa-  

ion clearly outperforms apriori and fp-growth by some extent.  
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