
IJREAS Volume 3, Issue 3 (March 2013) ISSN: 2249-3905

 International Journal of Research in Engineering & Applied Sciences 168
 http://www.euroasiapub.org

IMPROVING PERFORMANCE OF FREQUENT ITEMSET

ALGORITHM
Kuldeep Singh Malik*

Neeraj Raheja**

ABSTRACT

 Frequent itemset mining leads to the discovery of associations among items in large

transactional database. The apriori algorithm adopts candidate generation and testing which

is easy to implement but candidate generation and support counting is very expensive in this.

In the fp-growth, there is no candidate generation and requires only 2 passes over the

database but in this fp-tree is very expansive to built and support is counted only when entire

dataset is added to fp-tree. In this paper, I introduce enhancedfp which does its work without

prefix tree or any other complicated data structure and there is no re-representation of

transaction is necessary. Finally I compare the performance of enhancedfp with fp-growth

and apriori.

*M.Tech (CSE), M.M.E.C,Mullana (Haryana, India)

**Asst. Prof., M.M.E.C,Mullana (Haryana, India)

IJREAS Volume 3, Issue 3 (March 2013) ISSN: 2249-3905

 International Journal of Research in Engineering & Applied Sciences 169
 http://www.euroasiapub.org

I. INTRODUCTION
Association rule mining searches [2] for relationships between items in a dataset. It finds

association among set of items in transactional database. Each transaction is a list of items.

Association rules is in form A⇒B which means customer buys A also tends to buy B. To

mine association rule, basic concepts of support and confidence are needed. Support s is the

probability that a transaction contain (X, Y).Confidence C is the measure of the strength of

the association rule, suppose the confidence of the association rule x⇒y is 90%, it means that

90% of the transactions that contain X also contain Y together. Also minimum support and

minimum confidence is needed to eliminate the unimportant association rules. Such that the

association rules is hold when it is greater than the minimum support and minimum

confidence.

T_id items

100 a,b,c

200 a,c

300 a,d

400 b,e,f

Equation for support and confidence:

Support (A⇒ B) =Probability (A∩B).

Confidence (A⇒B) =Probability (B/A).

Let the min_support and min_confidence are 50%.for association rule a⇒c, support (a, c)

=2/4*100%=50%.Confidence=Support (a, c)

/Support (a) =50%/75%=66.6%, means that customer buys a also have 66.6% chance to buy

c. In this paper on the basis of study of the existing data mining algorithm apriori and fp-

growth and according to disadvantage of them in transactional database, an enhancedfp is

presented the enhancedfp avoids the problem of complex data structure and the experiments

results shows that the performance of the enhancedfp is better than fp-growth and apriori.

II. APRIORI ALGORITHM
The apriori algorithm is firstly purposed by R.aggrwal and R.srikant [6] in 1994 for mining

frequent itemset. . Apriori has monotonicity property which states-all non-empty subsets of a

frequent itemset must also be frequent Apriori algorithm contains a number of passes over the

IJREAS Volume 3, Issue 3 (March 2013) ISSN: 2249-3905

 International Journal of Research in Engineering & Applied Sciences 170
 http://www.euroasiapub.org

database .In this firstly the algorithm scan the database to find the set of frequent 1-itemset

and do count for each item and collecting those items that satisfy the minimum _support.

The resulting set is denoted by L1.Next L1 is used to find L2(frequent 2-itemset) which is

used to find L3 and so on, until no more frequent k-itemsets can be found. The finding of

each k requires on full scan of a database.

ADVANTAGES:

1. Use large itemset.

2. Easy to implement.

3. Easily parallelized.

DISDVANTAGE:

1. It may need to generate a huge no of candidate sets. So its generation is expensive.

2. Assumes transactional database is memory resident.

3. Support count is expensive because require many database scan.

III. FP-GROWTH
FP-GROWTH approach is based on divide and conquers strategy for producing the frequent

itemsets. It reduces the multiple scan over database Fp-growth is mainly used for mining

frequent itemsets without candidate generation.

Major steps in Fp-growth is-

Step1- It firstly compresses the database showing frequent itemset in to Fp-tree .Fp-tree is

built using 2 passes over the dataset.

First pass: frequent 1-itemset is same as in apriori frequent1-itemset.

Second pass: in this pass, the fp-tree is constructed. Nodes show the items and each node a

counter. Each transaction is processed in descending order &creates a branch for each

transaction. Fp reads one transaction at a time. When the transactions shares the same items

(have same prefix).The path can overlap & counters are incremented. Pointers are maintained

between nodes contains the same item, creating singly linked list {dotted lines).more the

overlap more the compression

Step2: It divides the Fp-tree in to a set of conditional database and mines each database

separately, thus extract frequent itemsets from Fp-tree directly.

ADVANTAGES:

1. It compresses the database.

2. Require only 2 pass over database.

3. There is no candidate generation.

IJREAS Volume 3, Issue 3 (March 2013) ISSN: 2249-3905

 International Journal of Research in Engineering & Applied Sciences 171
 http://www.euroasiapub.org

4. Faster than apriori.

5. Reduces search cost

DISADVANTAGE:

1. It may not fit in main memory.
2. FP tree is expensive to build.

I) takes time to build but once built frequent itemset can be obtained easily.

II) Support can only be calculated once the entire dataset is added to fp-tree.

IV. ENHANCEDFP
As the major disadvantage of fp-growth is construction of fp-tree as it takes a lot of time to

build and also expensive to built. Enhanced fp does its work without any complicated data

structure, processing the transactions directly. Its main strength is simplicity of its structure.

In this all the work is done in one simple recursive function. Enhancedfp is based on a step by

step elimination of items from the transaction database together with a recursive processing

of transaction subsets.

Preprocessing of transactional database

Supports of the items are determined in initial scan. All the items whose support is less than

the predefined minimum support are discarded from the transaction because they all are

infrequent items. All the items in each transaction are sorted in ascending order w.r.t to their

support in the database. Suppose the transactional database is:

a d

a c d e

b d

b c d g

b c f

a b d

b d e

b c d e

b c

a b d f

Suppose the predefined minimum support is 3.

IJREAS Volume 3, Issue 3 (March 2013) ISSN: 2249-3905

 International Journal of Research in Engineering & Applied Sciences 172
 http://www.euroasiapub.org

g 1

f 2

e 3

a 4

c 5

b 8

d 8

The items g and f is discarded because their support is less than minimum support.

Transaction sorted lexicographically in descending order.

a d e a c d

e a c d e c b d

b d e b d

c b d a b d

c b a b d

a b d a d

e b d c b d

e c b d c b

c b c b

a b d b d

Each transaction is represented as a simple array of item identifiers. The transaction database

is changed into a set of transaction lists, with one list for each item. Each element of which

contains a support counter and a pointer to the head of the list. The list elements themselves

consist only of a successor pointer and a pointer to the transaction. The transactions are

inserted one by one into this structure by simply using their leading item as an index.

However, the leading item is removed from the transaction, that is, the pointer in the

transaction list element points to the second item.

IJREAS Volume 3, Issue 3 (March 2013) ISSN: 2249-3905

 International Journal of Research in Engineering & Applied Sciences 173
 http://www.euroasiapub.org

d b c a e

initial database

 d b c a

 Prefix e

 d b c a

 e eliminated

 0 1 3 3 3

d b d

b

b d

d

a c d

c b d

b d

0 1 1 1

d
b d c d

0 2 4 4

d

d

b d

b d

b

c d

b d

d

IJREAS Volume 3, Issue 3 (March 2013) ISSN: 2249-3905

 International Journal of Research in Engineering & Applied Sciences 174
 http://www.euroasiapub.org

Before a transaction list is processed, however, its support counter is checked, and if it

exceeds the user-specified minimum support, a frequent item set is reported consisting of the

item associated with the list and a possible prefix associated with the whole list array.

Single transaction list is processed as follows: for each list element the leading item of its

transaction is retrieved and used as an index into the list array; then the element is added at

the head of the corresponding list. In such a reassignment, the leading item is also removed

from the transaction, which can be implemented as a simple pointer increment. In addition, a

copy of the list element (with the leading item of the transaction already removed by the

pointer increment) is inserted in the same way into an initially empty second array of

transaction lists.

Since the elements of a transaction list all share an item, this second array collects the subset

of transactions that contain a specific item and represents them as a set of transaction lists.

This set of transaction lists is then processed recursively. After the recursion the next

transaction list is reassigned, copied, and processed in a recursive call and so on. a list

element representing a transaction that contains only one item is neither reassigned nor

copied, because the transaction would be empty after the removal of the leading item. Instead

only the counter in the lists array element is incremented as an indicator of such list elements.

ADVANTAGES

1. Simple data structure and processing scheme.

2. Fastest than apriori and fp-growth.

V. EXPERIMENTAL RESULTS
T40I10D100k is synthetic data resemble market basket data with short frequent patterns.

Pumsb is a real dataset contains census data for population and housing. Mushroom is real

data which are dense in long frequent patterns. All the implementations is done in c and

compiled in Visual C++. All experiments are performed on 2.60GHZ Pentium [R] Dual-Core

CPU with 0.99 GB of memory, running Microsoft Windows XP Professional Version

2002.All times shown include time for outputting all the frequent itemset.

IJREAS Volume 3, Issue 3 (March 2013) ISSN: 2249-3905

 International Journal of Research in Engineering & Applied Sciences 175
 http://www.euroasiapub.org

Results of apriori,fp-growth and enhancedfp on mushroom.dat.

Figure 1

Results of apriori, fp-growth and enhancedfp on pumsb.tab.

Figure 2

Results of apriori,fp-growth and enhancedfp on T40I10D100K.dat.

Figure 3

I run implementations of apriori,fp-growth and enhancedfp on three datasets

mushroom,pumsb andT40I10D100K. Fig.1 to Fig3 shows the execution time of

IJREAS Volume 3, Issue 3 (March 2013) ISSN: 2249-3905

 International Journal of Research in Engineering & Applied Sciences 176
 http://www.euroasiapub.org

implementations over the various support.The blue line refers to apriori algorithm.The red

line refers to fp-growth algorithm.The green line refers to enhancedfp.

Figure1. Shows the running time of the compared algorithms on mushroom data with

different minimum supports represented by percentage of the total transactions. Under large

minimum supports, enhancedfp run faster than fp-growth and aprirori as well as under small

minimum supports. Thus on the dataset mushroom performance of enhancedfp is better than

apriori,fp-growth.

 Figure2. Shows the running time of the compared algorithms on pumsb data with different

minimum supports represented by percentage of the total transactions. Under large minimum

supports, enhancedfp run faster than fp-growth and aprirori, while under small minimum

supports performance of apriori is better. Thus on the dataset pumsb performance of

enhancedfp is better than apriori,fp-growth

Figure3. Shows the running time of the compared algorithms on T40I10D100K data with

different minimum supports represented by percentage of the total transactions. Under large

minimum supports, enhancedfp run faster than fp-growth and aprirori as well as

under small minimum supports. Thus on the dataset T40I10D100K performance of

enhancedfp is better than apriori,fp-growth

VI. CONCLUSION
In this paper I introduced enhancedfp,which does its work without any complex data

structure.By comparing it to frequent itemset mining algorithms apriori and fp-growth the

strength of enhancedfp is analyzed. As the

Experimental results show,this implementa-

ion clearly outperforms apriori and fp-growth by some extent.

VII. REFERENCES
[1] A. Swami, T. Imielienski, R. Agrawal Mining Association Rules between Sets of Items in

Large Databases. Proc. Conf. on Management of Data, 207–216. ACM Press, New York,

NY, USA 1993.

[2] Agrawal, R. and Srikant, R. 1994. Fast algorithms for mining association rules. In Proc.

1994 Int. Conf. Very Large Data Bases (VLDB’94), Santiago, Chile, pp. 487–499.

[3] A. Savasere, E. Omiecinski, S. Navathe, An efficient algorithm for mining association

rules in large databases, Proceedings of 21th VLDB Conference, Zurich, Switzerland, 2006

pp. 432–444.

IJREAS Volume 3, Issue 3 (March 2013) ISSN: 2249-3905

 International Journal of Research in Engineering & Applied Sciences 177
 http://www.euroasiapub.org

[4] D. Yang , H. Lu, J. Pei, J. Han, S. Nishio, S. Tang, and D. Yang. H-Mine: Hyper-

Structure Mining of Frequent Patterns in Large Databases. IEEE Conf. on Data Mining

(ICDM’01, San Jose, CA), 441–448. IEEE Press, Piscataway, NJ, USA 2001.

[5] H. Pei, J. Han, and Y. Yin. Mining Frequent Patterns without Candidate Generation. In:

Proc. Conf. on the Management of Data (SIGMOD’00, Dallas, TX). ACM Press, New York,

NY, USA 2000.

[6] J. Han and M. Kamber, "Data Mining: Concepts and Techniques", 2nd Edition, Morgan

Kaufmann Publishers, August 2006

 [7] M. Zaki, M. Ogihara, S. Parthasarathy, and W. Li. New Algorithms for Fast Discovery of

Association Rules. Proc. 3rd Int. Conf. on Knowledge Discovery and Data Mining

(KDD’97), 283–296. AAAI Press,

Menlo Park, CA, USA 1997.

[8] Grahne, G., & Zhu, J.”Fast Algorithm for frequent Itemset Mining Using FP-Trees”,

IEEE Transactions on Knowledge and Data Engineer, Vol.17, NO.10, 2005.

