### A COMPARATIVE STUDY ON BEHAVIOUR OF RC AND COMPOSITE STRUCTURE WITH AND WITHOUT FLOATING COLUMN SUBJECTED TO SEISMIC LOADING IN ZONE V

### B.S. Meghana<sup>1</sup>,

Post graduate Student,

Department of Civil Engineering,

The National Institute of Engineering, Mysore.

### T.H. Sadashiva Murthy<sup>2</sup>

Associate Professor,

Department of Civil Engineering,

The National Institute of Engineering, Mysore.

### Abstract

In recent times, many buildings are planned and constructed with architectural complexities. The complexities include various types of irregularities like floating columns at various level and locations. These floating columns are highly disadvantageous in building built in seismically active areas. The earthquake forces that are developed at different floor levels in building need to be carried down along the height to ground by shortest path, but due to floating column there is discontinuity in the load transfer path which results in poor performance of building.

In this paper we focus on the building to be analyzed as a whole by Liner static analysis for RC and composite structure consisting parameters such as floating columns in different positions in plan, in buildings of various height such as G+3, G+10 and G+15 in earthquake zones V. Comparison of various parameters such as storey shear, storey drift and storey displacement is done.

**Keywords:** Floating column, irregular building, earthquake behavior, composite structure, linear static analysis, ETABS.

### **1. Introduction**

A column is supposed to be a vertical member starting from foundation level and transferring the load to the ground. The term floating column is also a vertical element which at its lower level rests on a beam which is a horizontal member. Buildings with columns that hang or float on beams at an intermediate storey and do not go all the way to the foundation, have discontinuities in the load transfer path. The beams in turn transfer the load to other columns below it. Such columns where the load was considered as a point load.

There are many projects in which floating columns are already adopted, especially above the ground floor, so that more open space is available on the ground floor. These open spaces may

be required for assembly hall or parking purpose. The column is a concentrated load on the beam which supports it. The structures already made with these kinds of discontinuous members are endangered in seismic regions.



Figure 1: Hanging or floating column

Floating columns are competent enough to carry gravity loading but transfer girder must be of adequate dimensions (Stiffness) with very minimal deflection.

Steel concrete composite construction is built in place of RC structures to get maximum benefits from steel and concrete to produce economic structures. Structures are failing in earthquake prone zone due to irregularity in structure hence proper design is required. In India most of the building systems were low rise buildings. Now a days due to greater migration towards cities increases population in most of the major cities. In order fulfill the requirement of this increased population in the limited land the height of building becomes medium to high-rise. Along with this there is necessity for efficient and economical construction of buildings. The best way to produce efficient and economical design of building system is composite steel-concrete construction. Composite steel concrete design and construction has wide range of scope as well as necessity in present construction world.

The performance of building during an earthquake depends upon several factors, stiffness, ductility, lateral strength and Simple and regular configuration. Buildings having uniformly distributed mass, stiffness and simple and regular configuration cause less damage compared to buildings having irregular configuration. Vertical Mass irregularity is an important factor which is to be considered while designing multistoried building. This paper work focuses on study of multistoried R.C.C. & Composite building vertical irregularity in buildings using ETABS v9.7.4 software. The analysis between R.C.C and composite building involves parametric study of storey displacement, storey shear and storey drifts. Linear static analysis is carried out in order to know the seismic performance of R.C.C and Composite structure

### 2. Objectives

- To study the behaviour of RCC and composite multistorey building of various height of same dimension.
- To study the behaviour of RCC and composite structure at different zones with floating column in different positions in plan area.
- To find the critical position of floating column in both RCC and composite structure.

### 3. Literature review

Isha Rohilla, S.M. Gupta, Babita Saini [4] have conducted response spectrum analysis for critical position of floating columns in vertically irregular buildings has been discussed for G+5 and G+7 RC building for zone II and Zone V. Also the effect of size of beams and columns carrying the load of floating column has been assessed using ETABS software. Kavya.N, Dr.K.Manjunatha and Sachin.P.Dyavappanavar [5] the study is carried out on seismic behavior of the RC multi storey buildings with and without floating column are considered. The analysis is carried out for multi storey building of G+3 situated at zone IV, using ETABS software linear static and response spectrum analysis is done and parameters such as displacement, storey drift and base shear is compared. A.P.Mundada and S.G. Sawdatkar[6] studied equivalent static analysis on existing building comprising of G+7. The load distribution on the floating columns and the various effects due to it is also been studied in the paper. The importance and effects due to line of action of force is also studied. In this paper they are dealing with comparative study of seismic analysis of multistoried building with and without floating columns. The equivalent static analysis is carried out for entire project mathematically 3D model using software STAAD *Pro V8i* and the comparison of these models and to get very systematic and economical design of structure. Prof.Swapnil B. Cholekar and Basavalingappa.S.M[9] investigation is done on the mass irregularity of the building and its behavior in seismic regions, they have considered the Irregularity in the form of Mass in G+9 multistoried R.C.C. and Composite building and compared both R.C.C. and Composite structures. Equivalent static and Response spectrum methods are used to analyze the building as per IS 1893(Part 1):2002 using SAP 2000 software. Mass irregularity at upper or middle floor should be considered. The study shows that Composite structures having mass irregularity will better perform than R.C.C. structures.

The literature study reveals that a number of works has been carried out on seismic behavior of RC structures with and without floating columns and they have given conclusions such as not to recommend floating columns in seismically active areas due to stiffness irregularity, discontinuous load transfer path and increase in values of parameters such as storey drift displacement when compare to regular RC structure without floating column and in few papers they have given suggestions to improve stiffness of column by retrofitting, providing bracings they can be decrease in the lateral deformations. as we know that composite structure are more stiffer than RC we carry out a linear static analysis to know the behaviour of composite structure with floating column on the behaviour of RC structures with floating column.

### 4. Analytical study

In linear static analysis most of the structures are still carried out on the basis of lateral (horizontal) force assumed to be equivalent to the actual (dynamic) loading. The base shear which is the total horizontal force on the structure is calculated on the basis of structure mass and fundamental period of vibration and corresponding mode shape. The base shear is distributed along the height of structures in terms of lateral forces according to the IS 1893 (part 1): 2002 code formula.

The present study is done by using ETABS v9.7.4(Extended Three-dimensional Analysis of Building Systems) it is fully integrated program that allows model creation, modification, execution of analysis, design optimization, and results review from within a single interface ETABS v9.7.4 is a standalone finite element based structural program for the analysis and design of civil structures. It offers an intuitive, yet powerful user interface with many tools to aid in quick and accurate construction of models, along with sophisticated technique needed to do more complex projects.

The structure considered here is a regular building with plan dimension of 30m X 30m, different height of building such as G+3, G+10, G+15 storey model located in Seismic Zone V. Table1 &

2shows the Structural data for RC and composite structure and Figure shows the positions of floating column considered in building.



Figure 2: Elevation of G+3 storey building



Figure 3: Elevation of G+10 storey building



Figure 4: Elevation of G+15 storey building



Figure 5b: Columns

removed in edges of exterior frame in ground floor (elevation view)

Figure 6b: Columns removed in outer face of exterior frame in ground floor

(elevation view)

Figure 7b: Columns removed in middle of interior frame in ground floor (Section view A-A)

Table 1: Structural data for RCC structure

| Dimension of building         |                      | 30m X 30m            |                      |
|-------------------------------|----------------------|----------------------|----------------------|
| Number of storeys             | G+3                  | G+10                 | G+15                 |
| Height of each floor          | 3m                   | 3m                   | 3m                   |
| Beam dimension                | 300 X 450 mm         | 300 X 450 mm         | 300 X 450 mm         |
| Column dimension              | 300 X 300 mm         | 450 X 450 mm         | 600 X 600 mm         |
| Thickness of slab             | 150 mm               | 150 mm               | 150 mm               |
| Thickness of exterior<br>wall | 230mm                | 230mm                | 230mm                |
| Thickness of interior wall    | 150mm                | 150mm                | 150mm                |
| Seismic zone                  | V                    | V                    | V                    |
| Zone factor                   | 0.36                 | 0.36                 | 0.36                 |
| Importance factor             | 1                    | 1                    | 1                    |
| Type of soil                  | Medium soil          | Medium soil          | Medium soil          |
| Response reduction factor     | 5                    | 5                    | 5                    |
| Live load                     | 3kN/m <sup>2</sup>   | 3kN/m <sup>2</sup>   | 3kN/m <sup>2</sup>   |
| Floor finish                  | $1.5 \text{ kN/m}^2$ | $1.5 \text{ kN/m}^2$ | $1.5 \text{ kN/m}^2$ |
| Floor load on roof            | $1.5 \text{ kN/m}^2$ | $1.5 \text{ kN/m}^2$ | $1.5 \text{ kN/m}^2$ |
| Wall load on exterior beam    | 12 kN/m              | 12kN/m               | 12kN/m               |
| Wall load on interior beam    | 6 kN/m               | 6kN/m                | 6kN/m                |
| Grade of concrete             | M25                  | M25                  | M25                  |
| Grade of steel                | Fe415                | Fe415                | Fe415                |

International Journal of Research in Engineering & Applied Sciences Email:- editorijrim@gmail.com, http://www.euroasiapub.org

Dimension of building 30m X 30m Number of storeys G+3 G+10 G+15 Height of each floor 3m 3m 3m 300 X 450 mm of 300 X 450 mm of 300 X 450 mm of Beam dimension **ISMB 350 ISMB 350 ISMB 350** 300 X 300 mm of 450 X 450 mm of 600 X 600 mm of Column dimension ISHB 250 ISHB 300 ISHB 450 150mm with 20mm 150mm with 20mm 150mm with 20mm Thickness of deck slab dia shear connectors dia shear connectors dia shear connectors Thickness of exterior wall 230mm 230mm 230mm Thickness of interior wall 150mm 150mm 150mm Seismic zone V V V 0.36 0.36 0.36 Zone factor Importance factor 1 1 1 Medium soil Medium soil Medium soil Type of soil Response reduction factor 5 5 5 3kN/m<sup>2</sup> Live load 3kN/m<sup>2</sup> 3kN/m<sup>2</sup> Floor finish  $1.5 \text{ kN/m}^2$  $1.5 \text{ kN/m}^2$  $1.5 \text{ kN/m}^2$ Floor load on roof  $1.5 \text{ kN/m}^2$  $1.5 \text{ kN/m}^2$  $1.5 \text{ kN/m}^2$ Wall load on exterior beam 12 kN/m 12kN/m 12kN/m Wall load on interior beam 6 kN/m 6kN/m 6kN/m M25 Grade of concrete M25 M25 Fe350 Fe350 Fe350 Grade of steel

#### Table 2: Structural data for composite structure

**IJREAS** 

### 5. Results and discussion

The present study is to compare, how the behavior of RCC structure and composite structure with and without floating column in different zones and to find the critical position of floating column by linear static analysis.

Model 1: G+15 storeys RCC and composite building without floating column

Model 2: G+ 15 storeys RCC and composite building with floating column in outer face of exterior frame in ground floor

Model 3: G+ 15 storeys RCC and composite building with floating column in middle of interior frame in ground floor

Model 4: G+ 15 storeys RCC and composite building with floating column in edges of exterior frame in ground floor

| Storey | Model 1- | Model 1- | Model 2- | Model 2- | Model 3- | Model 3- | Model 4- | Model 4- |
|--------|----------|----------|----------|----------|----------|----------|----------|----------|
| No.    | RCC      | Comp     | RCC      | Comp     | RCC      | Comp     | RCC      | Comp     |
| 1      | 2.208    | 1.765    | 2.353    | 1.883    | 2.36     | 1.884    | 2.43     | 1.962    |
| 2      | 9.984    | 7.997    | 10.422   | 8.339    | 10.521   | 8.41     | 10.69    | 8.57     |
| 3      | 18.924   | 15.258   | 19.589   | 15.776   | 19.532   | 15.722   | 20.1     | 16.218   |
| 4      | 28.187   | 22.802   | 29.059   | 23.481   | 28.813   | 23.279   | 29.818   | 24.138   |
| 5      | 37.522   | 30.408   | 38.595   | 31.244   | 38.152   | 30.889   | 39.605   | 32.118   |
| 6      | 49.651   | 39.982   | 50.922   | 40.973   | 50.28    | 40.462   | 52.194   | 42.068   |
| 7      | 61.611   | 49.418   | 63.079   | 50.559   | 62.239   | 49.896   | 64.616   | 51.879   |
| 8      | 73.21    | 58.567   | 74.87    | 59.859   | 73.838   | 59.045   | 76.672   | 61.401   |
| 9      | 84.303   | 67.317   | 86.152   | 68.758   | 84.931   | 67.7971  | 88.216   | 70.519   |
| 10     | 94.722   | 75.537   | 96.758   | 77.123   | 95.35    | 76.0178  | 99.082   | 79.102   |
| 11     | 104.282  | 83.081   | 106.503  | 88.811   | 104.912  | 83.563   | 109.087  | 87.007   |
| 12     | 112.789  | 89.79    | 115.186  | 91.663   | 113.415  | 90.274   | 118.028  | 94.074   |
| 13     | 120      | 95.493   | 122.589  | 97.507   | 120.64   | 95.98    | 125.688  | 100.133  |
| 14     | 125.715  | 100      | 128.48   | 102.161  | 126.3535 | 100.497  | 131.835  | 105.001  |
| 15     | 129.687  | 103.156  | 132.631  | 105.451  | 130.329  | 103.64   | 136.242  | 108.504  |
| 16     | 131.894  | 104.925  | 135.019  | 107.362  | 132.54   | 105.422  | 138.89   | 110.634  |

## Table 3: Storey displacement values of G+15 storey composite building in X-direction at zone V

# Table 4: Storey displacement values of G+15 storey composite building in Y-direction at zone V

| Storey | Model 1- | Model 1- | Model 2- | Model 2- | Model 3- | Model 3- | Model 4- | Model 4- |
|--------|----------|----------|----------|----------|----------|----------|----------|----------|
| No.    | RCC      | Comp     | RCC      | Comp     | RCC      | Comp     | RCC      | Comp     |
| 1      | 2.208    | 1.1915   | 2.353    | 2.045    | 2.36     | 2.037    | 2.43     | 2.143    |
| 2      | 9.984    | 8.582    | 10.422   | 8.932    | 10.521   | 9.0044   | 10.69    | 9.178    |
| 3      | 18.924   | 16.17    | 19.589   | 16.696   | 19.532   | 16.633   | 20.1     | 17.161   |
| 4      | 28.187   | 23.983   | 29.059   | 24.672   | 28.813   | 24.454   | 29.818   | 25.361   |
| 5      | 37.522   | 31.839   | 38.595   | 32.687   | 38.152   | 32.311   | 39.605   | 33.6     |
| 6      | 49.651   | 42.307   | 50.922   | 43.314   | 50.28    | 42.778   | 52.194   | 44.458   |
| 7      | 61.611   | 52.624   | 63.079   | 53.788   | 62.239   | 53.093   | 64.616   | 55.166   |
| 8      | 73.21    | 62.625   | 74.87    | 63.943   | 73.838   | 63.093   | 76.672   | 65.553   |
| 9      | 84.303   | 72.187   | 86.152   | 73.657   | 84.931   | 72.654   | 88.216   | 75.497   |
| 10     | 94.722   | 81.166   | 96.758   | 82.786   | 95.35    | 81.633   | 99.082   | 84.854   |
| 11     | 104.282  | 89.404   | 106.503  | 91.172   | 104.912  | 89.871   | 109.087  | 93.467   |
| 12     | 112.789  | 96.728   | 115.186  | 98.642   | 113.415  | 97.196   | 118.028  | 101.162  |
| 13     | 120      | 102.949  | 122.589  | 105      | 120.64   | 103.418  | 125.688  | 107.753  |
| 14     | 125.715  | 107.865  | 128.48   | 110.069  | 126.3535 | 108.336  | 131.835  | 113.038  |
| 15     | 129.687  | 111.277  | 132.631  | 113.626  | 130.329  | 111.75   | 136.242  | 116.818  |
| 16     | 131.894  | 113.144  | 135.019  | 115.639  | 132.54   | 113.61   | 138.89   | 119.06   |



Figure 8: Storey Displacement value of G+15 storeys RCC and Composite building in X and Y direction without floating column at zone V



Figure 9: Storey Displacement value of G+15 storeys RCC and Composite building in X and Y direction with floating column in exterior position at zone V



Figure 10: Storey Displacement value of G+15 storeys RCC and Composite building in X and Y direction with floating column in interior position at zone V



# Figure 11: Storey Displacement value of G+15 storeys RCC and Composite building in X and Y direction with floating column in edges at zone V

From the tables and graphs the following observations are made in G+ 15 storeys building the displacement value obtained is as follows:

- Composite structure without floating column is decreased by 20.44% in X- direction and 14.21% in Y- direction when compared to RCC without floating column.
- Composite structure with floating column in outer face of exterior frame is decreased by 20.61% in X- direction and 14.35% in Y- direction when compared to RCC with floating column outer face of exterior frame.
- Composite structure with floating column in middle of interior frame is decreased by 20.44% in X- direction and 14.26% in Y- direction when compared to RCC with floating column in middle of interior frame.

• Composite structure with floating column in edges of exterior frame is decreased by 20.34% in X- direction and 14.28% in Y- direction when compared to RCC with floating column in edges of exterior frame.

| Storey | Model 1- | Model 1- | Model 2- | Model 2- | Model 3- | Model 3- | Model 4- | Model 4- |
|--------|----------|----------|----------|----------|----------|----------|----------|----------|
| No.    | RCC      | Comp     | RCC      | Comp     | RCC      | Comp     | RCC      | Comp     |
| 1      | 1.144    | 0.909    | 1.222    | 0.978    | 1.382    | 1.104    | 1.23     | 0.979    |
| 2      | 2.592    | 2.077    | 2.69     | 2.154    | 2.72     | 2.175    | 2.758    | 2.213    |
| 3      | 2.98     | 2.42     | 3.056    | 2.479    | 3.004    | 2.437    | 3.137    | 2.549    |
| 4      | 3.088    | 2.515    | 3.157    | 2.568    | 3.094    | 2.519    | 3.239    | 2.64     |
| 5      | 3.112    | 2.535    | 3.179    | 2.588    | 3.113    | 2.536    | 3.262    | 2.66     |
| 6      | 4.043    | 3.191    | 4.109    | 3.243    | 4.043    | 3.191    | 4.196    | 3.317    |
| 7      | 3.987    | 3.145    | 4.052    | 3.196    | 3.986    | 3.144    | 4.141    | 3.27     |
| 8      | 3.866    | 3.05     | 3.931    | 3.1      | 3.866    | 3.05     | 4.019    | 3.174    |
| 9      | 3.698    | 2.917    | 3.761    | 2.966    | 3.698    | 2.917    | 3.848    | 3.039    |
| 10     | 3.473    | 2.74     | 3.535    | 2.788    | 3.473    | 2.74     | 3.622    | 2.861    |
| 11     | 3.187    | 2.515    | 3.348    | 2.563    | 3.187    | 2.515    | 3.335    | 2.635    |
| 12     | 2.834    | 2.236    | 2.894    | 2.284    | 2.834    | 2.237    | 2.98     | 2.356    |
| 13     | 2.407    | 1.901    | 2.468    | 1.984    | 2.408    | 1.902    | 2.553    | 2.02     |
| 14     | 1.903    | 1.505    | 1.964    | 1.551    | 1.908    | 1.506    | 2.049    | 1.623    |
| 15     | 1.324    | 1.05     | 1.384    | 1.096    | 1.325    | 1.051    | 1.469    | 1.168    |
| 16     | 0.736    | 0.59     | 0.796    | 0.637    | 0.737    | 0.591    | 0.884    | 0.71     |

### Table 5: Storey drift values of G+15 storey composite building in X-direction at zone V

### Table 6: Storey drift values of G+15 storey composite building in Y-direction at zone V

| Storey | Model 1- | Model 1- | Model 2- | Model 2- | Model 3- | Model 3- | Model 4- | Model 4- |
|--------|----------|----------|----------|----------|----------|----------|----------|----------|
| No.    | RCC      | Comp     | RCC      | Comp     | RCC      | Comp     | RCC      | Comp     |
| 1      | 1.144    | 0.986    | 1.222    | 1.063    | 1.382    | 1.212    | 1.23     | 1.059    |
| 2      | 2.592    | 2.223    | 2.69     | 2.299    | 2.72     | 2.322    | 2.758    | 2.362    |
| 3      | 2.98     | 2.529    | 3.056    | 2.588    | 3.004    | 2.543    | 3.137    | 2.661    |
| 4      | 3.088    | 2.604    | 3.157    | 2.659    | 3.094    | 2.607    | 3.239    | 2.733    |
| 5      | 3.112    | 2.618    | 3.179    | 2.672    | 3.113    | 2.619    | 3.262    | 2.746    |
| 6      | 4.043    | 3.487    | 4.109    | 3.542    | 4.043    | 3.489    | 4.196    | 3.619    |
| 7      | 3.987    | 3.439    | 4.052    | 3.491    | 3.986    | 3.438    | 4.141    | 3.569    |
| 8      | 3.866    | 3.334    | 3.931    | 3.385    | 3.866    | 3.333    | 4.019    | 3.463    |
| 9      | 3.698    | 3.187    | 3.761    | 3.238    | 3.698    | 3.187    | 3.848    | 3.315    |
| 10     | 3.473    | 2.993    | 3.535    | 3.045    | 3.473    | 2.993    | 3.622    | 3.119    |
| 11     | 3.187    | 2.746    | 3.348    | 2.795    | 3.187    | 2.746    | 3.335    | 2.871    |
| 12     | 2.834    | 2.441    | 2.894    | 2.49     | 2.834    | 2.441    | 2.98     | 2.565    |
| 13     | 2.407    | 2.074    | 2.468    | 2.122    | 2.408    | 2.074    | 2.553    | 2.197    |
| 14     | 1.903    | 1.639    | 1.964    | 1.687    | 1.908    | 1.639    | 2.049    | 1.762    |
| 15     | 1.324    | 1.137    | 1.384    | 1.185    | 1.325    | 1.138    | 1.469    | 1.26     |
| 16     | 0.736    | 0.622    | 0.796    | 0.671    | 0.737    | 0.623    | 0.884    | 0.747    |



Figure 12: Storey drift value of G+ 15 storeys RCC and Composite building in X and Y direction without floating column at zone V



Figure 13: Storey drift value of G+ 15 storeys RCC and Composite building in X and Y direction with floating column in exterior position at zone V.



Figure 14: Storey drift value of G+ 15 storeys RCC and Composite building in X and Y direction with floating column in interior position at zone V.



# Figure 15: Storey drift value of G+ 15 storeys RCC and Composite building in X and Y direction with floating column in edges at zone V.

From the tables and graphs the following observations are made in G+ 15 storeys building the drift value obtained is as follows:

- Composite structure without floating column is decreased by 21.1% in X- direction and 13.7% in Y- direction when compared to RCC without floating column.
- Composite structure with floating column in outer face of exterior frame is decreased 21% in X- direction and 13.7% in Y- direction when compared to RCC with floating column outer face of exterior frame.
- Composite structure with floating column in middle of interior frame is decreased by 21.1% in X- direction and 13.7% in Y- direction when compared to RCC with floating column in middle of interior frame.

• Composite structure with floating column in edges of exterior frame is decreased by 21% in X- direction and 13.8% in Y- direction when compared to RCC with floating column in edges of exterior frame.

| Storey | Model   |
|--------|---------|---------|---------|---------|---------|---------|---------|---------|
| No.    | 1-RCC   | 1-Comp  | 2-RCC   | 2-Comp  | 3-RCC   | 3-Comp  | 4-RCC   | 4-Comp  |
| 1      | 7527.91 | 7685.22 | 7526.76 | 7684.01 | 7525.99 | 7683.23 | 7526.56 | 7683.79 |
| 2      | 7526.52 | 7683.77 | 7525.36 | 7682.57 | 7524.6  | 7681.8  | 7525.17 | 7682.35 |
| 3      | 7509.58 | 7666.49 | 7508.43 | 7665.29 | 7507.67 | 7664.25 | 7508.24 | 7665.07 |
| 4      | 7466.22 | 7622.25 | 7546.08 | 7621.06 | 7464.32 | 7620.29 | 7464.88 | 7620.85 |
| 5      | 7384.24 | 7538.62 | 7383.12 | 7537.44 | 7382.37 | 7535.88 | 7382.92 | 7537.22 |
| 6      | 7255.05 | 7406.86 | 7253.94 | 7405.7  | 7253.21 | 7404.95 | 7253.76 | 7405.49 |
| 7      | 7069.09 | 7217.2  | 7068.01 | 7216.07 | 7067.29 | 7215.34 | 7067.82 | 7215.87 |
| 8      | 6811.69 | 6954.7  | 6810.65 | 6953.61 | 6809.96 | 6952.91 | 6810.47 | 6953.41 |
| 9      | 6470.29 | 6607.54 | 6470.3  | 6606.5  | 6469.64 | 6605.84 | 6470.13 | 6606.32 |
| 10     | 6036.29 | 6163.91 | 6030.37 | 6162.94 | 6034.76 | 6162.32 | 6035.21 | 6162.77 |
| 11     | 5495.12 | 5612    | 5949.28 | 5611.12 | 5493.73 | 5610.55 | 5494.14 | 5610.96 |
| 12     | 4836.19 | 4393.99 | 4835.45 | 4939.22 | 4834.96 | 4938.72 | 4835.32 | 4939.08 |
| 13     | 4047.92 | 4136.07 | 4047.3  | 4135.43 | 4046.89 | 4135.01 | 4047.19 | 4135.31 |
| 14     | 3118.72 | 3188.44 | 3118.25 | 3187.94 | 3117.93 | 3187.62 | 3118.17 | 3187.85 |
| 15     | 2037.02 | 2085.27 | 2036.71 | 2084.95 | 2036.51 | 2084.74 | 2036.66 | 2084.89 |
| 16     | 791.23  | 814.76  | 791.11  | 814.63  | 791.03  | 814.55  | 791.09  | 814.61  |

Table 7: Storey Shear values of G+ 15 storeys RCC and composite building in zone V



### Figure 16: Storey shear value of G+ 15 storeys RCC and Composite building at zone V.

From the table and graph the following observations are made in G+ 15 storeys building the drift value obtained is as follows:

- The base shear value of composite is 2% more compare to RCC in zone V G+15 storey building
- •

### 6. Conclusions

- Displacement in composite building with and without floating column is less when compare RCC building with and without floating column.
- The floating column provided in edges of outer face of building is more critical because it shows more displacement and drift values in both composite and RCC building.
- Storey shear value will be more for lower floors, than the higher floors due to the reduction in weight when we go from bottom to top floors.
- The base shear value decreased due to introduction of floating column i.e. reduction in mass of column in both RCC and composite structure.
- The base shear values obtained in composite is more than RCC in our study due to increase in weight of structure which can be reduced by using smaller size I-section in steel concrete composite section so that it becomes economical in high rise building.

### Reference

[1] **Euro Code 4**, *"Design of composite steel and concrete structure"*, European committee for standardization.

[2] **IS- 1893: Partl (2002),** *"Criteria for Earthquake Resistant Design of Structures",* Bureau of Indian Standards, New Delhi.

[3] **IS-11384:**1985, *"code of practice for design of composite structure"*, Bureau of Indian Standards, New Delhi.

[4] **Isha Rohilla ,Gupta S.M. et.al,** "Seismic response of multi- storey irregular building with floating column", *International journal of engineering research and technology*, Vol4.,issue 3,Mar-2015, pp 506-518.

[5] **Kavya.N, Manjunatha.K et.al,** "Seismic evaluation of multistory RC building with and without floating column", *International journal of engineering research and technology*, Vol.2.,issue 6,Sep-2015, pp 361-365.

[6] **Mundada.A.P and Sawdatkar.S.G.,** "Comparative seismic analysis of multistory building with and without floating column", *International Journal of current Engineering and technology*, vol.4, No.5, Oct-2014, pp 3395-3400.

[7] **Nikhil Bandwal, Anant Pande et.al,** "To study seismic behaviour of RC building with floating columns", *International journal of scientific engineering and technology research*, vol.03,issue.08,May-2014, pp1593-1596.

[8] **Shweta.A. Wagh and Waghe.U.P,** "Comparative study of RCC and steel concrete composite structures", *International journal of engineering research and application*, vol.4, issue4 (version 1), April-2014, pp 369-376.

[9] **Swapnil.B.Cholekar and Basavlingappa.S.M**, "Comparative analysis of multistoried RCC and composite building due to mass irregularity", *International research journal of engineering and technology*, vol.2, issue.4,July-2015, pp-603-608.