
IJRIM Volume 2, Issue 2 (February 2012) (ISSN 2231-4334)

 International Journal of Research in IT & Management 69
http://www.mairec.org

A CONCEPT OF DISTRIBUTED DATABASE SYSTEM
Preety Khatri*

ABSTRACT
A database that consists of two or more data files located at different sites on a computer

network. Because the database is distributed, different users can access it without interfering

with one another. However, the DBMS must periodically synchronize the scattered databases

to make sure that they all have consistent data. To ensure that the distributive databases are

up to date and current, there are two processes: replication and duplication. Replication

involves using specialized software that looks for changes in the distributive database. This

process can also require a lot of time and computer resources. Duplication It basically

identifies one database as a master and then duplicates that database. A distributed database

system allows applications to access data from local and remote databases. Besides

distributed database replication and fragmentation, there are many other distributed

database design technologies. For example, local autonomy, synchronous and asynchronous

distributed database technologies. In this paper we will discuss about database architecture,

design etc. & how these technologies implementation and depend on the needs of the business

and the sensitivity/confidentiality of the data to be stored in the database.

*Senior Lecturer, Northern India Engineering College, New Delhi

http://www.webopedia.com/TERM/D/database_management_system_DBMS.html�

IJRIM Volume 2, Issue 2 (February 2012) (ISSN 2231-4334)

 International Journal of Research in IT & Management 70
http://www.mairec.org

INTRODUTION
Before going on to Distributed Database Systems, let us briefly explain you about

Centralised Database Systems. Here all system components i.e. the database and the

Database Management System (DBMS) reside at a single computer or site. Users may be

able to access the Centralised Database System remotely via terminals connected to the site;

however all the data access and processing takes place at the central site. The following

figure shows a Centralised DB System.

Figure1: Centralized Database System

Distributed database management system (DDBMS) In a DDS, database applications running

at any of the system's sites should be able to operate on any of the database fragments

transparently i.e., as if the data come from a single database managed by one DBMS. The

software that manages a distributed database in such a way is called DDBMS.

The notion of distributed database is different from that of decentralized database. The

latter does not imply sharing of data by a communication network. The former implies a

collection of sites connected together with some kind of network and where each site has a

database in its own right, but the sites work together as if data was stored at only one site.

Figure 2: Distributed and Decentralized Database System

IJRIM Volume 2, Issue 2 (February 2012) (ISSN 2231-4334)

 International Journal of Research in IT & Management 71
http://www.mairec.org

DISTRIBUTED DATABASE ARCHITECTURE
A distributed database system allows applications to access data from local and remote

databases. In a homogenous distributed database system, each database is an Oracle

Database. In a heterogeneous distributed database system, at least one of the databases is not

an Oracle Database. Distributed databases use client/server architecture to process

information requests. In this I explained the following terms:

• Homogenous Distributed Database Systems

• Heterogeneous Distributed Database Systems

• Client/Server Database Architecture

(a) Homogenous Distributed Database Systems: A homogenous distributed database

system is a network of two or more Oracle Databases that reside on one or more machines.

Figure-3 illustrates a distributed system that connects three databases: hq, mfg, and sales. An

application can simultaneously access or modify the data in several databases in a single

distributed environment. For example, a single query from a Manufacturing client on local

database mfg can retrieve joined data from the products table on the local database and the

dept table on the remote hq database.

For a client application, the location and platform of the databases are transparent. You can

also create synonyms for remote objects in the distributed system so that users can access

them with the same syntax as local objects. For example, if you are connected to database

mfg but want to access data on database hq, creating a synonym on mfg for the remote dept

table enables you to issue this query:

SELECT * FROM dept;

In this way, a distributed system gives the appearance of native data access. Users on mfg do

not have to know that the data they access resides on remote databases.

Figure 3: Homogeneous Distributed Database

IJRIM Volume 2, Issue 2 (February 2012) (ISSN 2231-4334)

 International Journal of Research in IT & Management 72
http://www.mairec.org

Distributed Databases Versus Distributed Processing:

The terms distributed database and distributed processing are closely related, yet have distinct

meanings. There definitions are as follows:

• Distributed database: A set of databases in a distributed system that can appear to

applications as a single data source.

• Distributed processing: The operations that occurs when an application distributes its

tasks among different computers in a network. For example, a database application

typically distributes front-end presentation tasks to client computers and allows a

back-end database server to manage shared access to a database. Consequently, a

distributed database application processing system is more commonly referred to as a

client/server database application system.

Distributed database systems employ a distributed processing architecture. For example, an

Oracle Database server acts as a client when it requests data that another Oracle Database

server manages.

Distributed Databases Versus Replicated Databases:

The terms distributed database system and database replication are related, yet distinct. In a

pure (that is, not replicated) distributed database, the system manages a single copy of all data

and supporting database objects. Typically, distributed database applications use distributed

transactions to access both local and remote data and modify the global database in real-time.

The term replication refers to the operation of copying and maintaining database objects in

multiple databases belonging to a distributed system. While replication relies on distributed

database technology, database replication offers applications benefits that are not possible

within a pure distributed database environment.

Most commonly, replication is used to improve local database performance and protect the

availability of applications because alternate data access options exist. For example, an

application may normally access a local database rather than a remote server to minimize

network traffic and achieve maximum performance. Furthermore, the application can

continue to function if the local server experiences a failure, but other servers with replicated

data remain accessible.

(b).Heterogeneous Distributed Database Systems:

In a heterogeneous distributed database system, at least one of the databases is a non-Oracle

Database system. To the application, the heterogeneous distributed database system appears

as a single, local, Oracle Database. The local Oracle Database server hides the distribution

and heterogeneity of the data.

IJRIM Volume 2, Issue 2 (February 2012) (ISSN 2231-4334)

 International Journal of Research in IT & Management 73
http://www.mairec.org

The Oracle Database server accesses the non-Oracle Database system using Oracle

Heterogeneous Services in conjunction with an agent. If you access the non-Oracle Database

data store using an Oracle Transparent Gateway, then the agent is a system-specific

application. For example, if you include a Sybase database in an Oracle Database distributed

system, then you need to obtain a Sybase-specific transparent gateway so that the Oracle

Database in the system can communicate with it.

Alternatively, you can use generic connectivity to access non-Oracle Database data stores so

long as the non-Oracle Database system supports the ODBC or OLE DB protocols.

Heterogeneous Services:

Heterogeneous Services (HS) is an integrated component within the Oracle Database server

and the enabling technology for the current suite of Oracle Transparent Gateway products.

HS provides the common architecture and administration mechanisms for Oracle Database

gateway products and other heterogeneous access facilities. Also, it provides upwardly

compatible functionality for users of most of the earlier Oracle Transparent Gateway releases.

(c.) Client/Server Database Architecture

A database server is the Oracle software managing a database, and a client is an application

that requests information from a server. Each computer in a network is a node that can host

one or more databases. Each node in a distributed database system can act as a client, a

server, or both, depending on the situation.

In Figure-4 , the host for the hq database is acting as a database server when a statement is

issued against its local data (for example, the second statement in each transaction issues a

statement against the local dept table), but is acting as a client when it issues a statement

against remote data (for example, the first statement in each transaction is issued against the

remote table emp in the sales database).

Figure -4: An Oracle Database Distributed Database System

IJRIM Volume 2, Issue 2 (February 2012) (ISSN 2231-4334)

 International Journal of Research in IT & Management 74
http://www.mairec.org

A client can connect directly or indirectly to a database server. A direct connection occurs

when a client connects to a server and accesses information from a database contained on that

server. For example, if you connect to the hq database and access the dept table on this

database as in Figure-4 , you can issue the following:

SELECT * FROM dept;

This query is direct because you are not accessing an object on a remote database.

In contrast, an indirect connection occurs when a client connects to a server and then accesses

information contained in a database on a different server. For example, if you connect to the

hq database but access the emp table on the remote sales database as in Figure-4, you can

issue the following:

SELECT * FROM emp@sales;

This query is indirect because the object you are accessing is not on the database to which

you are directly connected.

DISTRIBUTED DATABASE DESIGN
The methodology used for the logical design of a centralized database applies to the design of

the distributed one as well. However, for a distributed database three additional factors have

to be considered.

Data Fragmentation: Before we decide how to distribute the data we must determine the

logical units of distribution. The database may be broken up into logical units called

fragments which will be stored at different sites. The simplest logical units are the tables

themselves.

• Horizontal fragmentation: A horizontal fragment of a table is a subset of rows in it.

So horizontal fragmentation divides a table 'horizontally' by selecting the relevant

rows and these fragments can be assigned to different sides in the distributed system

(for ex. Euston Road branch gets the fragment where myTable.branch ='Euston

Road').

• Vertical fragmentation: a vertical fragment of a table keeps only certain attributes of

it. It divides a table vertically by columns. It is necessary to include the primary key

of the table in each vertical fragment so that the full table can be reconstructed if

needed.

• Mixed fragmentation: in a mixed fragmentation each fragment can be specified by a

SELECT-PROJECT combination of operations. In this case the original table can be

reconstructed be applying union and natural join operations in the appropriate order.

IJRIM Volume 2, Issue 2 (February 2012) (ISSN 2231-4334)

 International Journal of Research in IT & Management 75
http://www.mairec.org

Data Replication: A copy of each fragment can be maintained at several sites. Data

replication is the design process of deciding which fragments will be replicated.

Data Allocation: Each fragment has to be allocated to one or more sites, where it'll be

stored.

There are three strategies regarding the allocation of data:

• Fragmented (or Partitioned): The database is partitioned into disjoint fragments,

with each fragment assigned to one site (no replication). This is also called 'non-

redundant allocation'.

• Complete replication: A complete copy of the database is maintained at each site (no

fragmentation). Here, storage costs and communication costs for updates are most

expensive. To overcome some of these problems, snapshots are sometimes used. A

snapshot is a copy of the data at a given time. Copies are updated periodically.

• Selective replication: A combination of fragmentation and replication.

DATABASE LINKS
A database link is a connection between two physical database servers that allows a client to

access them as one logical database.

What are Database Links:

A database link is a pointer that defines a one-way communication path from an Oracle

database server to another database server. The link pointer is actually defined as an entry in

a data dictionary table. To access the link, you must be connected to the local database that

contains the data dictionary entry.

A database link connection allows local users to access data on a remote database. For this

connection to occur, each database in the distributed system must have a unique global

database name in the network domain. The global database name uniquely identifies a

database server in a distributed system.

Figure-5 shows an example of user scott accessing the emp table on the remote database with

the global name hq.acme.com:

IJRIM Volume 2, Issue 2 (February 2012) (ISSN 2231-4334)

 International Journal of Research in IT & Management 76
http://www.mairec.org

Figure-5: Database Links

Database links are either private or public. If they are private, then only the user who created

the link has access; if they are public, then all database users have access.

Type of Link Description:

Connected user link: Users connect as themselves, which means that they must have an

account on the remote database with the same username as their account on the local

database.

Fixed user link: Users connect using the username and password referenced in the link. For

example, if Jane uses a fixed user link that connects to the hq database with the username and

password scott/tiger, then she connects as scott, Jane has all the privileges in hq granted to

scott directly, and all the default roles that scott has been granted in the hq database.

Current user link: A user connects as a global user. A local user can connect as a global user

in the context of a stored procedure--without storing the global user's password in a link

definition. For example, Jane can access a procedure that Scott wrote, accessing Scott's

account and Scott's schema on the hq database. Current user links are an aspect of Oracle

Advanced Security.

Why Use Database Links:

The great advantage of database links is that they allow users to access another user's objects

in a remote database so that they are bounded by the privilege set of the object's owner. In

other words, a local user can access a link to a remote database without having to be a user on

the remote database.

IJRIM Volume 2, Issue 2 (February 2012) (ISSN 2231-4334)

 International Journal of Research in IT & Management 77
http://www.mairec.org

For example, assume that employees submit expense reports to Accounts Payable (A/P), and

further suppose that a user using an A/P application needs to retrieve information about

employees from the hq database. The A/P users should be able to connect to the hq database

and execute a stored procedure in the remote hq database that retrieves the desired

information. The A/P users should not need to be hq database users to do their jobs; they

should only be able to access hq information in a controlled way as limited by the procedure.

Database links allow you to grant limited access on remote databases to local users. By using

current user links, you can create centrally managed global users whose password

information is hidden from both administrators and non-administrators. For example, A/P

users can access the hq database as scott, but unlike fixed user links, scott's credentials are not

stored where database users can see them.

Types of Database Links:

Oracle lets you create private, public, and global database links. These basic link types

differ according to which users are allowed access to the remote database:

Type Owner Description

Private User who created the link.

View ownership data through:

• DBA_DB_LINKS

• ALL_DB_LINKS

• USER_DB_LINKS

Creates link in a specific

schema of the local

database. Only the owner of

a private database link or

PL/SQL subprograms in the

schema can use this link to

access database objects in

the corresponding remote

database.

Public User called PUBLIC. View

ownership data through views

shown above.

Creates a database-wide

link. All users and PL/SQL

subprograms in the database

can use the link to access

database objects in the

corresponding remote

database.

Global User called PUBLIC. View

ownership data through views

Creates a network-wide

link. When an Oracle

IJRIM Volume 2, Issue 2 (February 2012) (ISSN 2231-4334)

 International Journal of Research in IT & Management 78
http://www.mairec.org

shown above. network uses Oracle

Names, the names servers

in the system automatically

create and manage global

database links for every

Oracle database in the

network. Users and PL/SQL

subprograms in any

database can use a global

link to access objects in the

corresponding remote

database.

Distributed Database Administration:

The following sections explain some of the topics relating to database management in an

Oracle distributed database system:

(a). Site autonomy: means that each server participating in a distributed database is

administered independently from all other databases. Although several databases can work

together, each database is a separate repository of data that is managed individually. It

provides the benefits like Nodes of the system can mirror the logical organization of

companies or groups that need to maintain independence.

(b). Distributed Database Security: Oracle supports all of the security features that are

available with a nondistributed database environment for distributed database systems,

including: Password authentication for users and roles, Login packet encryption for client-to-

server and server-to-server connections.

(c). Auditing Dtabase Links: You must always perform auditing operations locally. That is,

if a user acts in a local database and accesses a remote database through a database link, the

local actions are audited in the local database, and the remote actions are audited in the

remote database--provided appropriate audit options are set in the respective databases.

(d).Adminstration Tools: The database administrator has several choices for tools to use

when managing an Oracle distributed database system:

• Enterprise Manager: Enterprise Manager is Oracle's database administration tool that

provides a graphical user interface (GUI). Enterprise Manager provides administrative

functionality for distributed databases through an easy-to-use interface. You can use

IJRIM Volume 2, Issue 2 (February 2012) (ISSN 2231-4334)

 International Journal of Research in IT & Management 79
http://www.mairec.org

Enterprise Manager to Administer multiple databases, Centralize database

administration tasks.

• Third Party Administration Tools: Currently more than 60 companies produce more

than 150 products that help manage Oracle databases and networks, providing a truly

open environment.

• SNMP Support: Besides its network administration capabilities, Oracle Simple

Network Management Protocol (SNMP) support allows an Oracle database server to

be located and queried by any SNMP-based network management system.

TRANSACTION PROCESSING IN DISTRIBUTED SYSTEM
A transaction is a logical unit of work constituted by one or more SQL statements executed

by a single user. A transaction begins with the user's first executable SQL statement and ends

when it is committed or rolled back by that user.

A remote transaction contains only statements that access a single remote node. A

distributed transaction contains statements that access more than one node.

Transaction processing is designed to maintain a computer system (typically a database or

some modern file systems) in a known, consistent state, by ensuring that any operations

carried out on the system that are interdependent are either all completed successfully or all

canceled successfully.

For example, consider a typical banking transaction that involves moving $700 from a

customer's savings account to a customer's checking account. This transaction is a single

operation in the eyes of the bank, but it involves at least two separate operations in computer

terms: debiting the savings account by $700, and crediting the checking account by $700. If

the debit operation succeeds but the credit does not (or vice versa), the books of the bank will

not balance at the end of the day. There must therefore be a way to ensure that either both

operations succeed or both fail, so that there is never any inconsistency in the bank's database

as a whole. Transaction processing is designed to provide this.

Transaction processing allows multiple individual operations to be linked together

automatically as a single, indivisible transaction. The transaction-processing system ensures

that either all operations in a transaction are completed without error, or none of them are. If

some of the operations are completed but errors occur when the others are attempted, the

transaction-processing system “rolls back” all of the operations of the transaction (including

the successful ones), thereby erasing all traces of the transaction and restoring the system to

the consistent, known state that it was in before processing of the transaction began. If all

IJRIM Volume 2, Issue 2 (February 2012) (ISSN 2231-4334)

 International Journal of Research in IT & Management 80
http://www.mairec.org

operations of a transaction are completed successfully, the transaction is committed by the

system, and all changes to the database are made permanent; the transaction cannot be rolled

back once this is done.

Transaction processing guards against hardware and software errors that might leave a

transaction partially completed, with the system left in an unknown, inconsistent state. If the

computer system crashes in the middle of a transaction, the transaction processing system

guarantees that all operations in any uncommitted (i.e., not completely processed)

transactions are cancelled.

Transactions are processed in a strict chronological order. If transaction n+1 intends to touch

the same portion of the database as transaction n, transaction n+1 does not begin until

transaction n is committed. Before any transaction is committed, all other transactions

affecting the same part of the system must also be committed; there can be no “holes” in the

sequence of preceding transactions.

DISTRIBUTED QUERY OPTIMIZATION
Distributed query optimization is an Oracle feature that reduces the amount of data transfer

required between sites when a transaction retrieves data from remote tables referenced in a

distributed SQL statement.

Distributed query optimization uses Oracle's cost-based optimization to find or generate SQL

expressions that extract only the necessary data from remote tables, process that data at a

remote site or sometimes at the local site, and send the results to the local site for final

processing. This operation reduces the amount of required data transfer when compared to the

time it takes to transfer all the table data to the local site for processing.

Using various cost-based optimizer hints such as DRIVING_SITE, NO_MERGE, and

INDEX, you can control where Oracle processes the data and how it accesses the data.

CONCLUSION
This paper focused on the design, architecture and how trasanctions being processed in

distributed database. The transaction-processing system ensures that either all operations in a

transaction are completed without error, or none of them are. Whereas query processing

distributed database reduces the amount of data transfer required between sites when a

transaction retrieves data from remote tables referenced in a distributed SQL statement. So

distributed database increase reliability and availability, protect valuable data and reflect

organizational structure.

IJRIM Volume 2, Issue 2 (February 2012) (ISSN 2231-4334)

 International Journal of Research in IT & Management 81
http://www.mairec.org

REFERENCES
1. B. G. Lindsey et al: “Notes on Distributed Databases”, IBM Research Report RJ2571

(July 1979)

2. C. J. Date: “What is a Distributed Database System?” in Relational Database writings

1985-1989, reading, Mass:Addision-Wesley (1990).

3. Distributed Databases by Tata McGraw-Hill Education, 1988
4. David Bell and Jane Grimson: Distributed Database Systems, Reading, Mass:

Addison-Wesley (1992).

5. Elmasri and Navathe, Fundamentals of database systems (3rd edition), Addison-

Wesley Longman, ISBN 0-201-54263-3

6. IBM Corporation: Distributed Databases Architecture Reference, IBM form No.

SC26-4651.

7. J. B. Rothnie Jt. Et al: “Introduction to a system for Distributed Databases (SDD-1)”,

ACM TODS 5, No. 1 (March 1980)

8. M. T. Ozsu and P. Valduriez, Principles of Distributed Databases (2nd edition),

Prentice-Hall, ISBN 0-13-659707-6

9. O'Brien, J. & Marakas, G.M.(2008) Management Information Systems (pp. 185-189).

New York, NY: McGraw-Hill Irwin

10. Phipil A. Bernstein et al: « Query Processing in a system for Distributed Databases

(SDD-1) », ACM TODS 6, No. 4 (December 1981).

11. Rob Goldring: A Discussion of Relational Database Raplication Tachnology”, infoDB

8, No. 1 (Spring 994)

12. Stefano Ceri and Giuseppe Pelagatti: Distributed Databases: Principles and Systems,

New York, N. Y.: McGrawHill (1984).

13. Yuri Breitbart, Hector Gracia-Molina and Avi Silberschatz: “Overview of Multi-

Database Transaction Management,” The VLDB Journal, No 2(October 1992)

	DISTRIBUTED DATABASE ARCHITECTURE
	Distributed Databases Versus Distributed Processing:
	Distributed Databases Versus Replicated Databases:
	(b).Heterogeneous Distributed Database Systems:
	Heterogeneous Services:

	(c.) Client/Server Database Architecture

