Available online at http://euroasiapub.org/journals.php

Vol. 7 Issue 6, June-2017, pp. 90~101

ISSN (0): 2249-3905, ISSN(P): 2349-6525 | Impact Factor: 7.196

Performance Evaluation of Monthly Reference Evapotranspiration Estimation Methods in Nellore Region

Dr. K. Chandrasekhar Reddy

Professor of Civil Engineering & Principal,

Siddharth Institute of Engineering & Technology, Puttur, Andhra Pradesh, India.

Abstract

Many reference evapotranspiration (ET_0) estimation methods have been developed for different types of climatic data, and the accuracy of these methods depends on climatic conditions of that area. In the present study, the monthly ET_0 values estimated from nine different ET_0 equations are evaluated with ET_0 estimated by FAO-56 Penman-Monteith (PM) equation in order to select an appropriate ET_0 equation in the semi-arid Nellore region of Andhra Pradesh, India. The evaluation is based on performance criteria, namely, Root Mean Square Error (RMSE), Coefficient of Determination (R^2) and Efficiency Coefficient (EC). Then the ET_0 equations were recalibrated with respect to the PM method for improving their monthly ET_0 estimation capability in the region selected for the present study. The recalibrated Modified Penman and Blaney-Criddle methods showed satisfactory performance in the monthly ET_0 estimation. However, the recalibrated Blaney-Criddle method may be suggested because of its simpler data requirements with a reasonable degree of accuracy.

Keywords: Recalibration, Reference evapotranspiration, Performance evaluation.

1.0 INTRODUCTION

Reference crop evapotranspiration (ET_0) computation forms an integral part of agriculture and regional water balance studies. The ET_0 equations developed are used according to the availability of historical and current weather data.

Most of the studies have shown that the FAO-56 Penman-Monteith (Allen et al.1998)^[1] equation gives very accurate ET_0 estimates in different environments. However, if climatic data availability is not sufficient to use this equation, the simple empirical methods yielding results comparable with PM ET_0 may be selected for reasonable estimation of ET_0 .

Berengena and Gavilan $(2005)^{[2]}$ evaluated several ET₀ estimation methods for hourly and daily estimates. Penman locally adjusted and ASCE PM performed the best, followed by the FAO PM method. FAO 24 methods showed a strong tendency to overestimate throughout the whole range of evaporation. The methods showed a tendency to underestimate more with increasing advective intensities except ASCE PM and FAO PM methods. Nandagiri and Kovoor $(2006)^{[4]}$ evaluated the performance of several ET₀ methods in the major climate regimes of India with a view to quantify the differences in ET₀ estimates as influenced by climatic conditions. Among the ET₀ methods evaluated the FAO 56 Hargreaves method yielded ET₀ estimates closest to the FAO 56 PM method both for daily and monthly time steps. Singh. V et al., $(2006)^{[6]}$ evaluated Priestley-Taylor, Turc, Blaney-Criddle, Hargreaves-Samani, Christiansen and pan evaporation ET₀ estimation methods, choosing the Penman-Monteith method as the standard of comparison for the Kashmir valley. Radiation and temperature based methods correlated well with the Penman-Monteith method.

ISSN (0): 2249-3905, ISSN(P): 2349-6525 | Impact Factor: 7.196

The present study reports the performance evaluation of commonly used nine empirical methods, namely, Blaney-Criddle, Jensen-Haise and Hargreaves (temperature based), Priestley-Taylor, Radiation and Makkink (radiation based), Modified Penman (physically based), Pan Evaporation and Christiansen (pan evaporation based) methods with respect to FAO-56 Penman-Monteith (PM) method for estimating monthly ET_0 . All these empirical methods are recalibrated with FAO-56 Penman-Monteith method for improving their performance in ET_0 estimation for the Nellore region of Andhra Pradesh.

2.0 MATERIAL AND METHODS

Nellore region, located in Nellore district of Andhra Pradesh, India, with global coordinates of 14° 22′N latitude and 79° 59′E longitudes, has been chosen as the study area. Meteorological data in the region for the period 1983-2003 was collected from India Meteorological Department (IMD), Pune. A part of the data (1983-1997) was used for developing recalibrated equations, while the rest of the data (1998-2003) was used to verify the performance of the recalibrated equations. The brief descriptions of the methods selected for the study are presented in Table 1.

Table1: Details of reference evapotranspiration estimation methods

Method	Equation	Input data	Input data			
Methou	Equation	Primary	Secondary			
Temperature based	$ET_0 = a + b [p (0.46T + 8.13)]$	T _{max} , T _{min}	RH _{min} , n, u ₂ ,			
1. FAO-24Blaney- Criddle(BC) method	Where $a = 0.0043 \text{ (RH}_{min)} - n/N - 1.41$ $b = 0.82 - 0.0041 \text{ (RH}_{min)} + 1.07 \text{ (n/N)}$ $+ 0.066 \text{ (ud)} - 0.006 \text{ (RH}_{min)} \text{ (n/N)}$ $-0.0006 \text{ (RH}_{min)} \text{ (ud)}$		u _d /u _n			
2.Jensen-Haise (JH) method 3.FAO-56 Hargreaves(HR)	$ET_0 = R_s (0.025 T_{mean} + 0.08)$	T _{max} , T _{min} ,				
method	$ET_0 = 0.0023 R_a (T_{mean} + 17.8) x (TD)^{0.5}$	$ \begin{array}{c} T_{max,} \ T_{min,} \\ n \end{array} $				
Radiation based 1. Priestley-Taylor	$ET_0 = 1.26 \frac{\Delta}{\Delta + \gamma} (R_n - G)$	$T_{max,} \ T_{min,}$ n				
(PT) method 2.FAO-24 Radiation (RA) method	$ET_0 = c \text{ (W.Rs)}$ Where $c = 1.066 - 0.00128 \text{ RH}_{mean} + 0.045 \text{ ud}$ $- 0.0002 \text{RH}_{mean} \text{ud} + 0.0000315 \text{ (RH}_{mean})^2$	T _{max} , T _{min} ,	RH _{max} , RH _{min} , u ₂ , u _d /u _n			
	(

3.Makkink(MK)	- 0.00103 (u _d) ²	T _{max} , T _{min} ,	
method	$ET_{0} = 0.65 \frac{\Delta}{\Delta + v} R_{s}$	n	
	Δ+γ		
Physically based			
1.FAO-24 Modified-	$ET_0 = C x$	T _{max} , T _{min} ,	u ₂ , u _d /u _n
Penman(MP)	$\left[\frac{\Delta}{\Delta + \gamma} R_n + \frac{\gamma}{\Delta + \gamma} (0.27)(1.0 + 0.01U_2)(e_s - e_a) \right]$	RH _{max} ,	
method	$\left[\Delta + \gamma^{-1} \Delta + \gamma^$	RH _{min} , n	
	Where		
	$C = 0.68 + 0.0028 (RH_{max}) + 0.018 (R_s)$		
	- 0.068 (u _d)+ 0.013 (u _d /u _n)		
	+ 0.0097 (u _d)(u _d /u _n)		
	+ 0.000043 (RH _{max}) (R _s) (u _d)		
2.FAO-56 Penman-			
Monteith(PM)		T_{max} , T_{min} , RH_{max} ,	
method	$ET_0 = \frac{0.408\Delta^{1}(R_n^{1} - G^{1}) + \gamma^{1} \frac{900}{T_{mean} + 273} u_2(e_s^{1} - e_a^{1})}{\Delta^{1} + \gamma^{1}(1 + 0.34u_2)}$	RH _{min} , u ₂ ,	
	ET ₀ = $\Delta^1 + \gamma^1 (1 + 0.34u_2)$		
Pan Evaporation based			
1. FAO-56 Pan			
Evaporation(PE)	$ET_0 = K_p E_{pan}$	Epan	FET, RH _{max,} RH _{min,} u ₂
method	where		,
	$K_p = 0.108 - 0.0286 u_2 + 0.0422 \ln(FET)$		
	+ $0.1434 \ln(RH_{mean})$ - $0.000631 [\ln(FET)]^2 \ln(RH_{mean})$		
2.Christiansen(CS)	ET ₀ = 0.473 R _a C _T C _W C _H C _S C _E С _М		T _{max} , T _{min} ,
method	where		u _{2,} RH _{max,}
	$C_T = 0.393 + 0.5592 (T/T_m) + 0.04756 (T/T_m)^2$		RH _{min} , n, E
	$C_{W}=0.708 + 0.3276 (U_{2}/U_{2m}) - 0.036 (U_{2}/U_{2m})^{2}$		

Vol. 7 Issue 6, June-2017

ISSN (0): 2249-3905, ISSN(P): 2349-6525 | Impact Factor: 7.196

$C_H = 1.25 - 0.212(RH/RH_m) - 0.038(RH/RH_m)^5$	
$C_S=0.542+0.64(s_p/s_{pm})-0.4992(s_p/s_{pm})^2$	
$+0.3174(s_p/s_{pm})^3$	
$C_E = 0.970 + 0.030(E/E_m)$	
C_M = ranges from 0.9 to 1.1depending on the latitude	

3. PERFORMANCE EVALUATION CRITERIA

The performance evaluation criteria used in the present study are, namely, the coefficient of determination, the root mean square error, systematic RMSE, unsystematic RMSE and the efficiency coefficient.

3.1 Coefficient of Determination (R2)

It is equivalent to the square of the correlation coefficient (R). Mathematical formula of 'R' is

$$R = \frac{\sum_{i=1}^{n} (o_i - \overline{o})(p_i - \overline{p})}{\left[\sum_{i=1}^{n} (o_i - \overline{o})^2 \sum_{i=1}^{n} (p_i - \overline{p})^2\right]^{1/2}}$$

Where, O and P are observed and estimated values, \overline{O} and \overline{P} are the means of observed and estimated values and n is the number of observations. It indicates the strength of the linear association between O and P. It evaluates performance of the model.

3.2 Root Mean Square Error (RMSE)

It measures the residuals between observed and estimated values and is expressed as

(Yu et al., 1994)[7]

$$RMSE = \sqrt{\frac{\sum_{i=1}^{n} (p_i - o_i)^2}{n}}$$

3.3 Systematic RMSE (RMSE_s)

It shows the room available for local adjustment. It is represented as

ISSN (0): 2249-3905, ISSN(P): 2349-6525 | Impact Factor: 7.196

$$RMSE_{s} = \sqrt{\frac{\sum_{i=1}^{n} (\hat{p}_{i} - o_{i})^{2}}{n}}$$

Where, $\hat{p}_i = a + bo_i$, a and b are the liner regression coefficients

3.4 Unsystematic RMSE (RMSE_u)

It a measure of scatter about the regression line and it shows the noise level in the model. It is represented as

$$RMSE_{u} = \sqrt{\frac{\sum_{i=1}^{n} (p_{i} - \hat{p}_{i})^{2}}{n}}$$

3.5 Efficiency Coefficient (EC)

It is used to assess the predictive power of <u>hydrological</u> models (Nash and Sutcliffe, 1970)^[5]. It is a better choice than RMSE statistic when the calibration and verification periods have different lengths (Liang et al., 1994)^[3]. It measures directly the ability of the model to reproduce the observed values and is expressed as

$$EC = 1 - \frac{\sum_{i=1}^{n} (o_i - p_i)^2}{\sum_{i=1}^{n} (o_i - \overline{o})^2}$$

A value of EC of 90% generally indicates a very satisfactory model performance while a value in the range 80-90%, a fairly good model. Values of EC in the range 60-80% would indicate an unsatisfactory model fit.

3.0 RESULTS AND DISCUSSION

The monthly ET_0 values estimated by different methods with original empirical coefficients were compared with those estimated by PM method. The percentage deviations with reference to the PM method are shown in Table 2. The positive deviation represents overestimation and negative deviation indicates underestimation of ET_0 values. It is observed that the deviations are significant for all the methods in ET_0 estimation. The performance of BC, CS and MP methods are relatively better than the other methods in the study region. The performance indicators of the methods with original coefficients are presented in Table 3. The relatively more unsystematic RMSE components with the ET_0 estimation methods except MP and BC methods indicate more noise level in the methods and scatter about the regression line.

ISSN (0): 2249-3905, ISSN(P): 2349-6525 | Impact Factor: 7.196

The temperature, radiation, physically and pan evaporation based methods selected for the present study were recalibrated with respect to the PM method as presented in Table 4. The performance indicators of these empirical models with original and recalibrated coefficients in the estimation of ET_0 are given in Table 5. The improved R^2 , EC and reduced RMSE (Table 5) indicate the closeness of estimated monthly ET_0 values and thereby reflect the appropriateness of recalibration. Though an improvement in the performance of ET_0 estimation methods with recalibrated coefficients over these methods with original coefficients, in general, has been observed (Table 5), a significant improvement has been found in case of recalibrated MP and BC methods. However, out of these methods, recalibrated BC method may be adopted in the reasonable monthly ET_0 estimation in the regions because of simpler data requirements. The scatter plots as shown in Figs.1 & 2 also depict similar observations.

Table 2 Percentage deviations in the estimated monthly reference evapotranspiration with original coefficients

Method	BC	JH	HR	PT	RA	MK	MP	PE	CS
Percentage	-19.0 to	-21.4 to	-21.6 to	-38.0 to	-10.2 to	-49.7 to	-14.3 to	-44.2 to	-18.2 to
deviation	17.4	59.6	36.3	22.9	96.5	11.3	39.6	53.8	22.7

Table 3 Performance indicators of various methods with original coefficients against PMM

Method	Slope(m)	Intercept(c)	R ²	RMSE	RMSEs	RMSEu	EC
				(mm)	(mm)	(mm)	(%)
ВС	0.9543	0.3728	0.9398	0.27	0.07	0.26	93.98
JH	0.7540	- 0.0575	0.7315	0.57	0.29	0.48	73.15
HR	0.9936	0.0364	0.8079	0.48	0.21	0.43	80.79
PT	1.0492	- 0.3339	0.6545	0.64	0.38	0.52	65.45
RA	0.6534	- 0.0973	0.5203	0.76	0.52	0.55	52.03
MK	1.2097	- 0.1152	0.5327	0.75	0.51	0.55	53.27
MP	0.7603	0.0910	0.9695	0.19	0.03	0.19	96.95
PE	0.5901	2.2014	0.5076	0.77	0.54	0.55	50.76
CS	0.9235	0.2314	0.9244	0.30	0.08	0.29	92.44

Table 4 ET₀ estimation methods with original and recalibrated coefficients

Metho d	Original equation	Recalibrated equation
ВС	$ET_0 = a + b [p (0.46T + 8.13)]$	$ET_0 = a + b [p (0.46T + 8.13)]$
	where	where
	$a = 0.0043 (RH_{min}) - n/N - 1.41$	$a = -0.1237(RH_{min}) -6.4(n/N) + 9.01$
	$b = 0.82 - 0.0041 (RH_{min})$	b = - 0.96+ 0.0179 (RH _{min})
	+ 1.07 (n/N) + 0.066 (u _d)	+ 0.99 (n/N) + 0.234 (u _d)
	- 0.006 (RH _{min}) (n/N)	+ 0.009 (RH _{min})(n/N)
	- 0.0006 (RH _{min}) (u _d)	- 0.0029 (RH _{min}) (u _d)
JH	$ET_0 = R_s (0.025 T + 0.08)$	$ET_0 = R_s (0.031 T - 0.30)$
HR	$ET_0 = 0.0023 R_a (T + 17.8) x (TD)^{0.5}$	$ET_0 = 0.0021 R_a (T + 21.8) x (TD)^{0.5}$
PT	$ET_0 = 1.26 \frac{\Delta}{\Delta + \gamma} (R_n - G)$	$ET_{0} = 1.22 \frac{\Delta}{\Delta + \gamma} (R_{n} - G)$
RA	$ET_0 = c (W.R_s)$	$ET_0 = c (W.R_s)$
	where	where
	c = 1.066 – 0.00128 RH + 0.045 u _d	$c = 0.705 - 0.0021 \text{ RH} + 0.374 \text{ u}_{d}$
	-0.0002RH u _d + 0.0000315 (RH) ²	- 0.0045 RH u _d + 0.000015 (RH) ²
	- 0.00103 (u _d) ²	+ 0.00305 (u _d) ²
MK	$ET_{0} = 0.65 \frac{\Delta}{\Delta + \gamma} R_{s}$	$ET_{0} = 0.76 \frac{\Delta}{\Delta + \gamma} R_{s}$
MP	$ET_0 = C x$	$ET_0 = C x$
	$\left[\frac{\Delta}{\Delta + \gamma} R_n + \frac{\gamma}{\Delta + \gamma} (0.27)(1.0 + 0.01 U_2)(e_s - e_a) \right]$	$\left[\frac{\Delta}{\Delta + \gamma} R_n + \frac{\gamma}{\Delta + \gamma} (0.27)(1.0 + 0.01 U_2)(e_s - e_a) \right]$
	where	
	$C = 0.68 + 0.0028(RH_{max}) + 0.018(R_s)$	where
	- 0.068 (u _d) + 0.013 (u _d / u _n)	$C = 0.66 + 0.0010 (RH_{max}) + 0.011 (R_s)$
	+ 0.0097 (u _d)(u _d /u _n)	- 0.013 (u _d) + 0.013 (u _d / u _n)
	+ 0.000043 (RH _{max}) (R _s) (u _d)	+ 0.0097 (u _d)(u _d /u _n)
		- 0.000038(RH _{max}) (R _s) (u _d)

Vol. 7 Issue 6, June-2017

ISSN (0): 2249-3905, ISSN(P): 2349-6525 | Impact Factor: 7.196

PE	$ET_0 = K_p E_{pan}$	$ET_0 = K_p E_{pan}$
	where	where
	$K_p = 0.108 - 0.0286 u_2$	$K_p = -3.667 + 0.1536 u_2$
	+ 0.0422 ln(FET)	+ 0.0422 ln(FET)
	+ 0.0422 III(FET)	+ 0.0422 III(FET)
	+ 0.1434 ln(RH)	+ 0.9766 ln(RH)
	- 0.000631[ln(FET)] ² ln(RH)	- 0.000631[ln(FET)] ² ln(RH)
CS	ET ₀ = 0.473 R _a C _T C _W C _H C _S C _E C _M	ETO = 2.45 Ra CT CW CH CS CE CM
	ETO STATE TO THE STATE OF SECOND	ETV ETTO TO TO ON OH OF OE ON
		1
	where	where
	$C_T = 0.393 + 0.02796T + 0.0001189(T)^2$	$C_T = 1.066 - 0.06495 \text{ T} + 0.001315 \text{ (T)}^2$
	$C_W = 0.708 + 0.00339W - 0.0000038(W)^2$	Cw=0.768+0.004556W-0.0000094 (W) ²
	C _H =1.25-0.00369RH - 6.1x10 ⁻¹¹ (RH) ⁵	C _H =1.01-0.00242 RH - 51.1x10 ⁻¹¹ (RH) ⁵
	$C_{S}=0.542+0.80S_{p}-0.78(S_{p})^{2}+0.62(S_{p})^{3}$	$C_S = 1.143 - 1.53S_p + 2.62 (S_p)^2 - 1.25 (S_p)^3$
	6.5 0.6 12 · 0.0005p 0.7 0(5p) · 0.02(5p)	33 111 13 11000p · 2102 (3p) 1120 (3p)
	C _E = 0.970 + 0.0000984 E	$C_E = 0.970 + 0.0000984 E$
	C = manage from 0.0 to 1.1 don 1:	C = vonges from 0.0 to 1.1 depending on the
	C_M = ranges from 0.9 to 1.1depending on the latitude	C _M = ranges from 0.9 to 1.1depending on the latitude
	l lie lautude	latitude

Table 5 Performance evaluation of ET_0 estimation methods with original and recalibrated coefficients against PM method

	Slope (1	m)		Interce	nt (c)		\mathbb{R}^2			RMSE	i I		EC		
	Stope (1	111)		interce	pt (c)		IX-			(mm)			(%)		
Metho d	Origin	recalibrated		Origin	recalibrated		Origin	recalibrated		Origi	recalibrate d		Origin	recalibrated	
	al	trainin g	testin g	al	trainin g	testing	al	trainin g	testing	nal	traini	testi ng		traini ng	testin g
ВС	0.9543	0.999 7	1.025 6	0.3728	- 0.0002	- 0.150 6	0.939 8	0.9844	0.9875	0.27	0.13	0.14	93.98	98.44	98.75
JH	0.7540	0.825 8	0.970 8	- 0.0575	0.8438	0.182 8	0.731 5	0.7618	0.9280	0.57	0.50	0.33	73.15	76.18	92.80
HR	0.9936	0.917 6	1.208 9	0.0364	0.3357	- 0.767 6	0.807 9	0.7871	0.8813	0.48	0.47	0.42	80.79	78.71	88.13
PT	1.0492	0.961 9	1.344 4	- 0.3339	0.1892	- 1.464 1	0.654 5	0.5810	0.8186	0.64	0.66	0.52	65.45	58.10	81.86
RA	0.6534	0.873 8	0.778 6	- 0.0973	0.5597	0.935 7	0.520 3	0.9345	0.9668	0.76	0.26	0.22	52.03	93.45	96.68
MK	1.2097	0.886 2	1.336 3	- 0.1152	0.5398	- 1.464 1	0.532 7	0.4330	0.7456	0.75	0.77	0.61	53.27	43.30	74.56
	0.7603			0.0910	- 0.0291	- 0.076 4	0.969 5	0.9966	0.9976	0.19	0.06	0.06	96.95	99.66	99.76
	0.5901			2.2014	1.8370		0.507 6	0.6058	0.8290	0.77	0.64	0.50	50.76	60.58	82.90
CS	0.9235	0.924 0	0.897 4	0.2314			0.924 4	0.9130	0.9332	0.30	0.30	0.31	92.44	91.30	93.32

Fig. 1 Scatter plots of monthly ET_0 estimated by various methods with original coefficients against ET_0 estimated using PM method

Fig. 2 Scatter plots of monthly ET_0 estimated by various methods with recalibrated coefficients against ET_0 estimated using PM method during testing period

4.0 CONCLUSIONS

The BC, JH and HR (temperature based), PT, RA and MK (radiation based), MP(physically based), PE and CS (pan evaporation based) reference evapotranspiration estimation methods have been recalibrated with respect to FAO-56 Penman-Monteith method and their performance in the monthly reference evapotranspiration (ET $_0$) estimation was evaluated based on the performance criteria. All these ET $_0$ estimation methods, in general, showed an improved performance with recalibrated coefficients. The recalibrated MP method and BC method have performed well in the monthly ET $_0$ estimation. However, recalibrated Blaney-Criddle (BC) method may be applied for the reasonable estimation of monthly ET $_0$ in the region because of simpler data requirements.

5.0 ACKNOWLEDGEMENT

I am thankful to the IMD, Pune. The data used in this paper for the study region was obtained from India Meteorological Department (Ministry of Earth Sciences, Government of India), Pune. http://www.imd.gov.in

Vol. 7 Issue 6, June-2017

ISSN (0): 2249-3905, ISSN(P): 2349-6525 | Impact Factor: 7.196

6.0 REFERENCES

- 1. Allen, R. G., Pereira, L. S., Raes, D. and Smith, M. (1998), Crop evapotranspiration Guidelines for computing crop water requirements FAO Irrigation and Drainage Paper 56, FAO, Rome.
- 2. Berengena, J. and Gavilan, P. (2005), Reference evapotranspiration estimation in a highly advective semiarid environment. Journal of Irrigation and Drainage Engineering, Vol. 131, No. 2, pp.147-163.
- 3. Liang, G. C., O'Connor, K. M. and Kachroo, R. K. (1994), A multiple-input single-output variable gain factor model. Journal of Hydrology, Vol.155, No.1-2, pp.185-198.
- 4. Nandagiri, L. and Kovoor, G. M. (2006). Performance evaluation of reference evapotranspiration equations across a range of Indian climates. Journal of Irrigation and Drainage Engineering, ASCE, Vol.132, No.3. pp. 238-249.
- 5. Nash, J. E. and Sutcliffe, J. V. (1970), River flow forecasting through conceptual models part I A discussion of principles. Journal of Hydrology, Vol.10, No.3, pp.282-290.
- 6. Singh, V., Kumar, V. and Agarwal, A. (2006). Reference evapotranspiration by various methods for Kashmir valley. Journal of Indian Water Resources Society, Vol.26, No.3-4, pp.1-4.
- 7. Yu, P. S., Liu, C. L. and Lee, T. Y. (1994), Application of a Transfer Function Model to a Storage-Runoff Process. Stochastic and Statistical Methods in Hydrology and Environmental Engineering, Vol.3, pp.87-97.