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ABSTRACT: 

The paper deals with the Cauchy-Dirichlet problem for the nonlinear inhomogeneous 

diffusion equation with the possible power degeneration conditions near the boundary of a 

cone-like domain. Our main technical tool for the obtaining of solution estimations is a 

suitable weighted Nerenberg-Gagliardo type inequality, which in turn is connected to a 

weighted isoperimetric inequality characterizing the geometry of the domain. On this basis we 

study the property of infinite speed of the perturbation propagation of the solution. The 

suffucient conditions ensuring the possibility to estimate the radius of a solution support in the 

absence of a source are given. The existence of a strong generalized solution has been proved. 
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INTRODUCTION: 

The One-Dimensional Wave Equation • Equation (1) utt − c2(x, t)uxx = f(x, t) is called the 

one-dimensional wave equation. – The coefficient c has the dimension of a speed and in 

fact,[1,2] we will shortly see that it represents the wave propagation along the string. – When 

f ≡ 0, the equation is homogeneous and the superposition principle holds: if u1 and u2 are 

solutions of (2) utt − c2uxx = 0 and a, b ∈ R, then au1 + bu2 is also a solution. – More 

generally, if uk(x, t) is a family of solutions depending on the parameter k and g = g(k) is a 

function rapidly vanishing at infinity, then X∞ k=1 uk(x, t)g(k) and Z +∞ −∞ uk(x, t)g(k)dk 

are still solutions of (2). • Suppose we are considering the space-time region 0 < x < L, 0 < t < 

T. By analogy with the Cauchy problem for second order o.d.e., the second order derivative in 

(1) suggests that in a well-posed problem for the (one-dimensional) wave equation not only 

the initial profiles of the string but the initial velocity has to be assigned as well. – Thus, our 

initial (or Cauchy) data are u(x, 0) = g(x), u)=h(x), x ∈ [0, L]. • The boundary data are 

typically: (i) Dirichlet data describes the displacement of the end points of the string: u(0, t) = 

a(t), u(L, t) = b(t), t> 0. If a(t) = b(t) ≡ 0 (homogeneous data), both ends are fixed, with zero 

displacement.[3,4] (ii) Neumann data describes the applied (scalar) vertical tension at end 

points. AS in the derivation of the wave equation, we may model this tension by τ0ux, so that 

the Neumann conditions takes the form τ0ux(0, t) = a(t), τ0ux(L, t) = b(t), t> 0. In the special 

case of homogeneous data, a(t) = b(t) ≡ 0, both ends of the string are attached to a frictionless 

sleeve and are free to move vertically. (iii) Robin data describes a linear elastic attachment at 

end points. One way to realize this type of boundary condition is to attach an end point to a 

linear spring whose other end is fixed. - This translates into assigning τ0ux(0, t) = ku(0, t), 

τ0(L, t) = −ku(L, t), t> 0, where k > 0 is the elastic constant of the spring.[5,6] 

1. The Global Cauchy problem for An Infinite String. We may think of a string of infinite 

length and assign only initial data u(x, 0) = g(x), ut(x, 0) = h(x), x ∈ R. Although physically 

unrealistic, it turns out that the solution of the global Cauchy problem is of fundamental 

importance. The solution of the global Cauchy problem is given by the d’Alembert formula 

u(x, t) = 1 2 [g(x − ct) + g(x + ct)] + Z x+ct x−ct h(y)dy. 2. The Semifinite String. The initial-

boundary problem is utt − c2uxx = 0, x> 0, t> 0 u(x, 0) = g(x), ut(x, 0) = h(x), x ≥ 0  u(0, t) = 
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0 (fixed endpoint), or ux(0, t) = 0 (free endpoint), t ≥ 0, where c2 = τ0/ρ0 is constant. • The 

problem for the semi-infinite string can be reduced to the problem for the infinite string, so 

that the solution of the problem for the infinite string, when restricted to a half-line, yields the 

solution of the problem for the semiinfinite string. • To do this, we must extend the initial 

condition to the entire line in such a way that the solution satisfies the boundary conditions at 

the point x = 0. • Parity considerations are helpful in doing this. Case I. The initial condition 

can be extended to the entire line as an even function provided the relation ux      x=0 = 0 

holds. But will the solution be an even function of x at all times? – The wave equation is 

invariant under the transformation x 7→ −x.[7,8] If the initial condition is even, that is, also 

invariant under this transformation, we then have two solutions u(x, t) and u(−x, t)of a global 

Cauchy problem. – However, the uniqueness of the solution of the global Cauchy problem 

was proved in the derivation of d’Alembertformula[9,10] 

DISCUSSION: 

Hence the two solutions u(x, t) and u(−x, t) coincide, so that u(x, t) = u(−x, t), and the solution 

is an even function. • This is a general idea: If the problem possesses some symmetry and the 

solution is unique, then the solution must also possess the symmetry. Case II. We can use an 

odd extention when the condition u    x=0 = 0 holds. The Cauchy-Dirichlet Problem for The 

Finite String. Suppose that the vibration of a violin chord is modelled by the following 

CauchyDirichlet problem utt − c2uxx = 0, 0 < x < L, t > 0 u(x, 0) = g(x), ut(x, 0) = h(x), 0 ≤ x 

≤ L, u(0, t) = u(L, t)=0, t ≥ 0, where c2 = τ0/ρ0 is constant. • The d’Alembert’s method is not 

very convenient for solving the boundary value problem in the case of finite string. Later on 

we will develop another very powerful method to handle this case.[9,10] • At present we 

illustrate the applications of d’Alembert’s method[11,12] to the problem utt − c2uxx = 0, 0 < 

x < L, t > 0 u(x, 0) = g(x), ut(x, 0) = h(x), 0 ≤ x ≤ L, u(0, t) = k(t), u(L, t)=0, t ≥ 0, The values 

brought from the boundary and the initial interval t = 0 along the charcteristics x − ±ct 

=constant contribute to the solution at the point (x, t). The characteristics undergo bending as 

they reflected from the boundary. – As a result, the value of the solution is an alternating sum 

of the values at the nodes of the resulting broken lines. Uniqueness. Use conservation of 

energy. – Let u and v be solutions of utt − c2uxx = f(x, t), 0 < x < L, t > 0 u(x, 0) = g(x), ut(x, 

0) = h(x), 0 ≤ x ≤ L, u(0, t) = k1(t), u(L, t) = k2(t), t ≥ 0, Then w = u – v 

is a solution of the problem utt − c2uxx = 0, 0 < x < L, t > 0 u(x, 0) = 0, ut(x, 0) = 0, 0 ≤ x ≤ 

L, u(0, t)=0, u(L, t)=0, t ≥ 0. Claim: w ≡ 0. – The total mechanical energy E(t) = Ekin(t) + 

Epot(t) = 1 2 Z L 0 [ρ0w2 t + τ0w2 x]dx and in our case we have E˙(t)=0 since f = 0 and wt(x, 

0) = wx(x, 0) = 0, whence E(t) = E(0), ∀t ≥ 0. Since, on particular, wt(x, 0) = wx(x, 0) = 0, we 

have E(t) = E(0) = 0, ∀t ≥ 0. On the other hand, Ekin(t) ≥ 0, Epot(t) ≥ 0, so that we deduce 

Ekin(t)=0, Epot(t)=0, which forces wt = wx = 0. Therefore w is constant. – Since w(x, 0) = 0, 

we conclude that w(x, t)=0, ∀t ≥ 0. Remark. (i) If we pluck a violin chord at a point, the initial 

profile is continuous but has a corner at that point and cannot be even C1. The physically 

realistic assumption for the initial profile g is continuity. (ii) Similarly, if we model the 

vibration of a chord set into motion by a strike or a little hammer, we should allow 

discontinuity in the initial velocity. • Observe that d’Alembert formula makes perfect sense 

even for g continuous and h bounded. – The question is in which sense the resulting function 

satisfies the wave equation, since, in principle, it is not even differentiable, only continuous. • 

It is possible to introduce weak formulations of the various initial-boundary value problem, in 

order to include realistic initial data and solutions with a low degree of regularity.[13] 
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RESULTS: 

In cylindrical polar coordinates (R, θ, z), the wave equation (3.1.1) assumes the form uRR + 1 

R uR + 1 R2 uθθ + uzz = 1 c 2 utt 

uRR + 1 R uR = 1 c 2 utt. 

In general, it is not easy to find the solution of (5.11.1). However, we shall solve this equation 

by using the method of separation of variables in Chapter 7. Here we derive the solution for 

outgoing cylindrical waves from the spherical wave solution (5.10.8). We assume that sources 

of constant strength Q (t) per unit length are distributed uniformly on the z-axis. The solution 

for the cylindrical waves produced by the line source is given by the total disturbance u (R, t) 

= − 1 4π  ∞ −∞ 1 r Q  t − r c  dz = − 1 2π  ∞ 0 1 r Q  t − r c  dz, (5.11.3) where R is the 

distance from the z-axis so that R2 =  r 2 − z 2 . Substitution of z = R sinh ξ and r = R cosh ξ 

in (5.11.3) gives u (R, t) = − 1 2π  ∞ 0 Q  t − R c cosh ξ  dξ. (5.11.4) This is usually 

considered as the cylindrical wave function due to a source of strength Q (t) at R = 0. It 

follows from (5.11.4) that utt = − 1 2π  ∞ 0 Q ′′ 

                                                                                                                                                         

t − R c cosh ξ  dξ, (5.11.5) uR = 1 2πc  ∞ 0 cosh ξ Q′  t − R c cosh ξ  dξ, (5.11.6) uRR = − 1 

2πc2  ∞ 0 cosh2 ξ Q′′ 

                                                                                                                                                         

t − R c cosh ξ  dξ, (5.11.7) which give c 2  uRR + 1 R uR  − utt = 1 2π  ∞ 0 d dξ c R Q ′  t − R 

c cosh ξ  sinh ξ dξ = lim ξ→∞ c 2πR Q ′  t − R c cosh ξ  sinh ξ = 0, provided the 

differentiation under the sign of integration is justified and the above limit is zero. This means 

that u (R, t) satisfies the cylindrical wave equation[11,12] 

“Since a general solution must be judged impossible from want of analysis, we must be 

content with the knowledge of some special cases, and that all the more, since the 

development of various cases seems to be the only way to bringing us at last to a more perfect 

knowledge.” Leonhard Euler “What would geometry be without Gauss, mathematical logic 

without Boole, algebra without Hamilton, analysis without Cauchy?” George Temple 

In the theory of ordinary differential equations, by the initial-value problem we mean the 

problem of finding the solutions of a given differential equation with the appropriate number 

of initial conditions prescribed at an initial point. For example, the second-order ordinary 

differential equation d 2u dt2 = f  t, u, du dt  and the initial conditions u (t0) = α, 

                                                                                                                                                         

du dt (t0) = β, constitute an initial-value problem. An analogous problem can be defined in the 

case of partial differential equations. Here we shall state the problem involving second-order 

partial differential equations in two independent variables. 

The preceding statement seems equally applicable to hyperbolic, parabolic, or elliptic 

equations. However, we shall see that difficulties arise in formulating the Cauchy problem for 

nonhyperbolic equations. Consider, for instance, the famous Hadamard (1952) example. The 

problem consists of the elliptic (or Laplace) equation uxx + uyy = 0, and the initial conditions 

on y = 0 u (x, 0) = 0, uy (x, 0) = n −1 sin nx. The solution of this problem is u (x, y) = n −2 

sinhny sin nx, which can be easily verified. It can be seen that, when n tends to infinity, the 

function n −1 sin nx tends uniformly to zero. But the solution n −2 sinhny sin nx does not 

become small, as n increases for any nonzero y. Physically, the solution represents an 

oscillation with unbounded amplitude  n −2 sinhny as y → ∞ for any fixed x. Even if n is a 

fixed number, this solution is unstable in the sense that u → ∞ as y → ∞ for any fixed x for 
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which sin nx = 0. It is obvious then that the solution does not depend continuously on the 

data. Thus, it is not a properly posed problem. In addition to existence and uniqueness, the 

question of continuous dependence of the solution on the initial data arises in connection with 

the Cauchy–Kowalewskaya theorem. It is well known that any continuous function can 

accurately be approximated by polynomials. We can apply the Cauchy–Kowalewskaya 

theorem with continuous data by using polynomial approximations only if a small variation in 

the initial data leads to a small change in the solution. 

CONCLUSIONS: 

dx2 − c 2 dt2 = 0, which reduces to dx + c dt = 0, dx − c dt = 0. The integrals are the straight 

lines x + ct = c1, x − ct = c2. Introducing the characteristic coordinates ξ = x + ct, η = x − ct, 

we obtain uxx = uξξ + 2 uξη + uηη, utt = c 2 (uξξ − 2 uξη + uηη). Substitution of these in 

equation (5.3.1) yields −4c 2uξη = 0. Since c = 0, we have uξη = 0. Integrating with respect to 

ξ, we obtain uη = ψ ∗ (η), where ψ ∗ (η) is an arbitrary function of η. Integrating again with 

respect to η, we obtain u (ξ,η) =  ψ ∗ (η) dη + φ (ξ). If we set ψ (η) = * ψ ∗ (η) dη, we have u 

(ξ,η) = φ (ξ) + ψ (η), where φ and ψ are arbitrary functions. Transforming to the original 

variables x and t, we find the general solution of the wave equation 

φ (x) = 1 2 f (x) + 1 2c  x x0 g (τ ) dτ + K 2 , ψ (x) = 1 2 f (x) − 1 2c  x x0 g (τ ) dτ − K 2 . The 

solution is thus given by u (x, t) = 1 2 [f (x + ct) + f (x − ct)] + 1 2c  x+ct x0 g (τ ) dτ −  x−ct 

x0 g (τ ) dτ = 1 2 [f (x + ct) + f (x − ct)] + 1 2c  x+ct x−ct g (τ ) dτ. 

By direct substitution, it can also be shown that the solution (5.3.8) is uniquely determined by 

the initial conditions (5.3.2) and (5.3.3). It is important to note that the solution u (x, t) 

depends only on the initial values of f at points x − ct and x + ct and values of g between these 

two points. In other words, the solution does not depend at all on initial values outside this 

interval, x − ct ≤ x ≤ x + ct. This interval is called the domain of dependence of the variables 

(x, t). Moreover, the solution depends continuously on the initial data, that is, the problem is 

well posed. In other words, a small change in either f or g results in a correspondingly small 

change in the solution u (x, t). Mathematically, this can be stated as follows: For every ε > 0 

and for each time interval 0 ≤ t ≤ t0, there exists a number δ (ε, t0) such that u (x, t) − u ∗ (x, 

t)| < ε, whenever |f (x) − f ∗ (x)| < δ, |g (x) − g ∗ (x)| < δ. The proof follows immediately from 

equation (5.3.8). We have |u (x, t) − u ∗ (x, t)| ≤ 1 2 |f (x + ct) − f ∗ (x + ct)| + 1 2 |f (x − ct) − f 

∗ (x − ct)| + 1 2c  x+ct x−ct |g (τ ) − g ∗ (τ )| dτ< ε, where ε = δ (1 + t0). For any finite time 

interval 0 <t[13] 
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