A UNIQUE COMMON FIXED POINT THEOREM IN HILBERT SPACE FOR SELF MAPPINGS

Mujahida Sayyed*, Farkhunda Sayyed** and Shoyeb Ali Sayyed***
*Assistant Professor, College of Agriculture, Jnkvv, Ganjbasoda Distt Vidisha M.P. India.
** Professor, SAGE University, Indore(M.P.)India
*** Principal, Royal College of Technology Indore(M.P.)India

Abstract

In this present review article, I boosted the developments of prominent educators as well as analyzers. Using I- Scheme and self mappings along with closed convex subset in Hilbert space for gathering a unique common fixed point. For getting hold of we did some tempering in old survey. Our desired result of the theorem is governing by a great number of experts.

KEY WORDS AND PHRASES : Closed Convex Subset, Functional Inequality, Hilbert Space, Ishikawa Iteration, Self Mappings, Unique Common Fixed Point

AMS(2010) SUBJECT CLASSIFICATIONS: Primary 47H10 Secondary 54H25

1. INTRODUCTION AND PRELIMINARY

Availing oneself of Rhoades [14,15] opinion Naimpally and Singh[8] extended it by using contraction condition , and sequel Sayyed and Badshah [17,18, 19,20] forwarded it. Again Imdad and Jawed [4]observed that the general form of his theorem remains true in metric spaces. In same pattern we gave result on nonlinear contraction with gaining a fixed point as well as Sayyed et.al.[21,22] examined it for self maps. For consequently started with Ciric [1], Das and Gupta [2], Yadav et,al [25], Veerapandi and Kumar [24],Rao et.al.[13] , Patel and Sharma [12].Nigam et.al. [9], Park [11],Dixit and Bhargav [3], Koparde and Waghmode[5,6], Modi and Gupta[7], Sharma et.al [23], Sangar andWaghmode[16] and Pandhare and Waghmode[10].

As follows to explain some of the changes made in-place:
(i) In the Ishikawa scheme $\left\{\mu_{2 \mathrm{n}}\right\}$, $\left\{\omega_{2 \mathrm{n}}\right\}$ satisfies $0 \leq \mu_{2 \mathrm{n}}, \omega_{2 \mathrm{n}} \leq 1,0 \leq \mu_{2 \mathrm{n}}, \omega_{2 \mathrm{n}} \leq 1, \forall \mathrm{n}$, $\lim \omega_{2 \mathrm{n}}=0$ as $\mathrm{n} \rightarrow \infty$ and $\sum \mu_{2 \mathrm{n}} \omega_{2 \mathrm{n}}=\infty$.

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \mu_{2 \mathrm{n}}=\mu_{0}>0 \tag{ii}
\end{equation*}
$$

(iii)

$$
\lim _{n \rightarrow \infty} \omega=\omega_{0}>1
$$

Let C^{*} be a non empts subset of B^{*}, where B^{*} is a Banach space as well as G and G^{*} be two mappings in C^{*} to C^{*} The iteration scheme, called I- Scheme, defined as follows:

$$
\begin{align*}
& \mathrm{r}_{0} \in \mathrm{C}^{*} \\
& \mathrm{~s}_{2 \mathrm{n}}=\omega_{2 \mathrm{n}} \mathrm{Gr}_{2 \mathrm{n}}+\left(1-\omega_{2 \mathrm{n}}\right) \mathrm{r}_{2 \mathrm{n}} \quad \mathrm{n} \geq 0 \tag{1.1}\\
& \mathrm{r}_{2 \mathrm{n}+1}=\left(1-\mu_{2 \mathrm{n}}\right) \mathrm{r}_{2 \mathrm{n}}+\mu_{2 \mathrm{n}} \mathrm{G}^{*} \mathrm{~s}_{2 \mathrm{n}} \quad \mathrm{n} \geq 0 \\
& \mathrm{~s}_{2 \mathrm{n}+1}=\omega_{2 \mathrm{n}+1} \mathrm{Gr}_{2 \mathrm{n}+1}+\left(1-\omega_{2 \mathrm{n}+1}\right) \mathrm{r}_{2 \mathrm{n}+1} \quad \mathrm{n} \geq 0 \tag{1.2}\\
& \mathrm{r}_{2 \mathrm{n}+1}=\left(1-\mu_{2 \mathrm{n}+1}\right) \mathrm{r}_{2 \mathrm{n}+1}+\mu_{2 \mathrm{n}+1} \mathrm{G}^{*} \mathrm{~s}_{2 \mathrm{n}+1} \quad \mathrm{n} \geq 0 \tag{1.3}
\end{align*}
$$

Its well known that B^{*} is H^{*} if and onls if its norms satisfies the parallelogram law, i.e. $\forall \mathrm{r}, \mathrm{s} \in B *$

$$
\begin{equation*}
\|r+s\|^{2}+\|r-s\|^{2}=2\|r\|^{2}+2\|s\|^{2} \tag{1.4}
\end{equation*}
$$

which implies, $\quad\|r+s\|^{2} \leq 2\|r\|^{2}+2\|s\|^{2}$

2.MAIN RESULT

THEOREM 2.1 : Taking G and G^{*} as two self mapping in a Hilbert space denoted by H^{*} with a closed convex subset abbreviated by $\mathrm{C} *$ in Hilbert space H^{*} also satisfying

$$
\begin{align*}
&\left\|\mathrm{Gr}-\mathrm{G}^{*} \mathrm{~s}\right\|^{2} \leq \Phi \max \left\{\|r-s\|^{2}, \frac{\|\mathrm{~s}-\mathrm{G} * \mathrm{~s}\| \|^{2}\left[1+\|\mathrm{r}-\mathrm{Gr}\|^{2}\right]}{1+\left.\|\mathrm{r}-\mathrm{s}\|\right|^{2}}, \frac{\left[1+\|\mathrm{s}-\mathrm{G} * \mathrm{~s}\| \|^{2}\right]\|\mathrm{r}-\mathrm{Gr}\|^{2}}{1+\|\mathrm{r}-\mathrm{s}\|^{2}}\right. \\
&\left.,\left[\|\mathrm{r}-\mathrm{Gr}\|^{2}+\left\|\mathrm{s}-\mathrm{G}^{*} \mathrm{~s}\right\|^{2}\right],\left[\left\|\mathrm{r}-\mathrm{G}^{*} \mathrm{~s}\right\|^{2}+\|\mathrm{s}-\mathrm{Gr}\|^{2}\right]\right\} \tag{2.1}
\end{align*}
$$

Taking Φ is arbitrary positive with $0 \leq 4 \Phi \leq 1$ and if $\exists r_{0}$ such that the I- scheme for G and G^{*} defined by (1.2) and (1.3), converges to a point z^{*}, then z^{*} is a common point of G and G^{*}.

PROOF:

From equation (1.2), describe $\mathrm{r}_{2 \mathrm{n}+1}-\mathrm{r}_{2 \mathrm{n}}=\mu_{2 \mathrm{n}}\left(\mathrm{G}^{*} \mathrm{~s}_{2 \mathrm{n}}-m_{2 \mathrm{n}}\right)$

International Journal of Research in Engineering and Applied Sciences(IJREAS)

Available online at http://euroasiapub.org
Vol. 8 Issue 8, August-2018,
ISSN (O): 2249-3905, ISSN(P): 2349-6525 | Impact Factor: 7.196|
Since $\mathrm{r}_{2 \mathrm{n}} \rightarrow \mathrm{u},\left\|\mathrm{r}_{2 \mathrm{n}+1}-\mathrm{r}_{2 \mathrm{n}}\right\| \rightarrow \infty$
Since $\left\{\mu_{2 n}\right\}$ is bounded away from zero, $\left\|\mathrm{G}^{*} \mathrm{~s}_{2 \mathrm{n}^{-}} \mathrm{r}_{2 \mathrm{n}}\right\| \rightarrow 0$ as $n \rightarrow \infty$.
It follows that $\left\|\mathrm{u}-\mathrm{G}^{*} \mathrm{~s}_{2 \mathrm{n}}\right\| \rightarrow 0$ as $n \rightarrow \infty$.
Since G and G* satisfy (2.1) we have

$$
\begin{gathered}
\left\|\mathrm{Gr}_{2 \mathrm{n}}-\mathrm{G}^{*} \mathrm{~s}_{2 \mathrm{n}}\right\|^{2} \leq \Phi \max \left\{\left\|\mathrm{r}_{2 \mathrm{n}}-\mathrm{s}_{2 \mathrm{n}}\right\|^{2}, \frac{\left\|\mathrm{~s}_{2 \mathrm{n}}-\mathrm{G} * \mathrm{~s}_{2 \mathrm{n}}\right\|^{2}\left[1+\left\|\mathrm{r}_{2 \mathrm{n}}-\mathrm{Gr}_{2 \mathrm{n}}\right\|^{2}\right]}{1+\left\|\mathrm{r}_{2 \mathrm{n}}-\mathrm{s}_{2 \mathrm{n}}\right\|^{2}},\right. \\
\frac{\left[1+\left\|\mathrm{s}_{2 \mathrm{n}}-\mathrm{G} * \mathrm{~s}_{2 \mathrm{n}}\right\|^{2}\right]\left\|\mathrm{r}_{2 \mathrm{n}}-\mathrm{Gr}_{2 \mathrm{n}}\right\|^{2}}{1+\left\|\mathrm{r}_{2 \mathrm{n}}-\mathrm{s}_{2 \mathrm{n}}\right\|^{2}}
\end{gathered}
$$

$$
\left.,\left[\left\|\mathrm{r}_{2 \mathrm{n}}-\mathrm{Gr}_{2 \mathrm{n}}\right\|^{2}+\left\|\mathrm{s}_{2 \mathrm{n}}-\mathrm{G}^{*} \mathrm{~s}_{2 \mathrm{n}}\right\|^{2}\right],\left[\left\|\mathrm{r}_{2 \mathrm{n}}-\mathrm{G}^{*} \mathrm{~s}_{2 \mathrm{n}}\right\|^{2}+\left\|\mathrm{s}_{2 \mathrm{n}}-\mathrm{Gr}_{2 \mathrm{n}}\right\|^{2}\right]\right\}
$$

Now, $\left\|\mathrm{s}_{2 \mathrm{n}}-\mathrm{r}_{2 \mathrm{n}}\right\|^{2}=\left\|\omega_{2 \mathrm{n}} \mathrm{Gr}_{2 \mathrm{n}}+\left(1-\omega_{2 \mathrm{n}}\right) \mathrm{r}_{2 \mathrm{n}}-\mathrm{r}_{2 \mathrm{n}}\right\|^{2}$
$=\left\|\omega_{2 n} G r_{2 n}+r_{2 n}-\omega_{2 n} r_{2 n}-c\right\|^{2}$
$=\left\|\omega_{2 n}\left(\operatorname{Gr}_{2 n}-r_{2 n}\right)\right\|^{2}$
$=\omega^{2}{ }_{2 n}\left\|\left(\mathrm{Gr}_{2 \mathrm{n}}+\mathrm{G}^{*} \mathrm{~s}_{2 \mathrm{n}}\right)+\left(\mathrm{G}^{*} \mathrm{~s}_{2 \mathrm{n}}-\mathrm{r}_{2 \mathrm{n}}\right)\right\|^{2}$
$\leq 2\left\|\operatorname{Gr}_{2 n}-G^{*} \mathrm{~s}_{2 \mathrm{n}}\right\|^{2}+2\left\|\mathrm{G}^{*} \mathrm{~s}_{2 \mathrm{n}}-\mathrm{r}_{2 \mathrm{n}}\right\|^{2}$
and

$$
\begin{equation*}
\left\|s_{2 n}-G^{*} s_{2 n}\right\|^{2}=\left\|\omega_{2 n} G r_{2 n}+\left(1-\omega_{2 n}\right) r_{2 n}-G^{*} s_{2 n}\right\|^{2} \tag{2.3}
\end{equation*}
$$

$$
=\left\|\omega_{2 n}{G r_{2 n}}+\left(1-\omega_{2 n}\right) r_{2 n}-G^{*} s_{2 n}+\omega_{2 n} G^{*} s_{2 n}-\omega s_{2 n} G^{*} s_{2 n}\right\|^{2}
$$

$$
=\left\|\omega_{2 n}\left(\mathrm{Gr}_{2 \mathrm{n}}-\mathrm{G}^{*} \mathrm{~s}_{2 \mathrm{n}}\right)+\left(1-\omega_{2 \mathrm{n}}\right)\left(\mathrm{r}_{2 \mathrm{n}}-\mathrm{G}^{*} \mathrm{~s}_{2 \mathrm{n}}\right)\right\|^{2}
$$

$$
\leq 2 \omega^{2}{ }_{2 n}\left\|\mathrm{Gr}_{2 \mathrm{n}}-\mathrm{G}^{*} \mathrm{~s}_{2 \mathrm{n}}\right\|^{2}+2\left(1-\omega_{2 \mathrm{n}}\right)^{2}\left\|\mathrm{r}_{2 \mathrm{n}}-\mathrm{G}^{*} \mathrm{~s}_{2 \mathrm{n}}\right\|^{2}
$$

$$
\begin{equation*}
\leq 2\left\|\mathrm{Gr}_{2 n}-G^{*} \mathrm{~s}_{2 n}\right\|^{2}+2\left\|\mathrm{r}_{2 \mathrm{n}}-\mathrm{G}^{*} \mathrm{~s}_{2 \mathrm{n}}\right\|^{2} \tag{2.4}
\end{equation*}
$$

from (2.2), (2.3) , (2.4) can be written as:

Or

Or

$$
\begin{aligned}
& \left\|\mathrm{Gr}_{2 \mathrm{n}}-\mathrm{G}^{*} \mathrm{~s}_{2 \mathrm{n}}\right\|^{2} \leq \Phi \max \left[2\left\|\mathrm{Gr}_{2 \mathrm{n}}-\mathrm{G}^{*} \mathrm{~s}_{2 \mathrm{n}}\right\|^{2}+2\left\|\mathrm{G}^{*} \mathrm{~s}_{2 \mathrm{n}}-\mathrm{r}_{2 \mathrm{n}}\right\|^{2}\right],\left[2\left\|\mathrm{Gr}_{2 \mathrm{n}}-\mathrm{G} * \mathrm{~s}_{2 \mathrm{n}}\right\|^{2}\right. \\
& \left.+2\left\|r_{2 n}-G * s_{2 n}\right\|^{2}\right] \\
& ,\left[2\left\|\mathrm{r}_{2 \mathrm{n}}-\mathrm{G}^{*} \mathrm{~s}_{2 \mathrm{n}}\right\|^{2}+2\left\|\mathrm{G}^{*} \mathrm{~s}_{2 \mathrm{n}}-\mathrm{Gr}_{2 \mathrm{n}}\right\|^{2}\right],\left[4\left\|\mathrm{r}_{2 \mathrm{n}}-\mathrm{G}^{*} \mathrm{~s}_{2 \mathrm{n}}\right\|^{2}+4\left\|\mathrm{Gr}_{2 \mathrm{n}}-\mathrm{G}^{*} \mathrm{~s}_{2 \mathrm{n}}\right\|^{2}\right] \\
& \text {, }\left[3\left\|\mathrm{r}_{2 \mathrm{n}}-\mathrm{G}^{*} \mathrm{~s}_{2 \mathrm{n}}\right\|^{2}+2\left\|\mathrm{Gr}_{2 \mathrm{n}}-\mathrm{G}^{*} \mathrm{~s}_{2 \mathrm{n}}\right\|^{2}\right]
\end{aligned}
$$

$$
\begin{aligned}
& , \frac{\left[2\left\|\mathrm{Gr}_{2 \mathrm{n}}-\mathrm{G} * \mathrm{~s}_{2 \mathrm{n}}\right\|^{2}+2\left\|\mathrm{r}_{2 \mathrm{n}}-\mathrm{G} * \mathrm{~s}_{2 \mathrm{n}}\right\|^{2}\right]\left[1+2\left\|\mathrm{r}_{2 \mathrm{n}}-\mathrm{G} * \mathrm{~s}_{2 \mathrm{n}}\right\|^{2}+2\left\|\mathrm{G} * \mathrm{~s}_{2 \mathrm{n}}-\mathrm{Gr}_{2 \mathrm{n}}\right\|^{2}\right]}{1+2\left\|\mathrm{Gr}_{2 \mathrm{n}}-\mathrm{G} * \mathrm{~s}_{2 \mathrm{n}}\right\|^{2}+2\left\|\mathrm{G} * \mathrm{~s}_{2 \mathrm{n}}-\mathrm{r}_{2 \mathrm{n}}\right\|^{2}} \\
& , \frac{\left[1+2\left\|G r_{2 n}-G * s_{2 n}\right\|^{2}+2\left\|\mathrm{r}_{2 \mathrm{n}}-\mathrm{G} * \mathrm{~s}_{2 \mathrm{n}}\right\|^{2}\right]\left[2\left\|r_{2 n}-G * s_{2 n}\right\|^{2}+2\left\|G * s_{2 n}-G r_{2 n}\right\|^{2}\right)}{1+2\left\|G r_{2 \mathrm{n}}-\mathrm{G} * \mathrm{~s}_{2 \mathrm{n}}\right\|^{2}+2\left\|\mathrm{G} * s_{2 \mathrm{n}}-\mathrm{r}_{2 \mathrm{n}}\right\|^{2}} \\
& ,\left[2\left\|r_{2 n}-G^{*} s_{2 n}\right\|^{2}+2\left\|G * s_{2 n}-G r_{2 n}\right\|^{2}+2\left\|\operatorname{Gr}_{2 n}-G^{*} s_{2 n}\right\|^{2}+2\left\|r_{2 n}-G^{*} s_{2 n}\right\|^{2}\right] \\
& \left.,\left[\left\|r_{2 n}-G^{*} s_{2 n}\right\|^{2}+2\left\|\operatorname{Gr}_{2 n}-G^{*} s_{2 n}\right\|^{2}+2\left\|r_{2 n}-G^{*} s_{2 n}\right\|^{2}\right]\right\}
\end{aligned}
$$

$\left\|\mathrm{Gr}_{2 \mathrm{n}}-\mathrm{G}^{*} \mathrm{~s}_{2 \mathrm{n}}\right\|^{2} \leq \Phi\left(2\left\|\mathrm{Gr}_{2 \mathrm{n}}-\mathrm{G}^{*} \mathrm{~s}_{2 \mathrm{n}}\right\|^{2}+2\left\|\mathrm{r}_{2 \mathrm{n}}-\mathrm{G}^{*} \mathrm{~s}_{2 \mathrm{n}}\right\|^{2}\right.$
Or
$(1-2 \Phi)\left\|\mathrm{Gr}_{2 \mathrm{n}}-\mathrm{G}^{*} \mathrm{~s}_{2 \mathrm{n}}\right\|^{2} \leq 2 \Phi\left\|\mathrm{r}_{2 \mathrm{n}}-\mathrm{G}^{*} \mathrm{~s}_{2 \mathrm{n}}\right\|^{2}$
Or
$\left\|\operatorname{Gr}_{2 n}-G^{*} \mathrm{~s}_{2 \mathrm{n}}\right\|^{2} \leq \frac{2 \Phi}{1-2 \Phi}\left\|\mathrm{r}_{2 \mathrm{n}}-\mathrm{G}^{*} \mathrm{~s}_{2 \mathrm{n}}\right\|^{2}$
Taking the \lim as $\mathrm{n} \rightarrow \infty$, we get $\left\|G r_{2 n}-G * s_{2 n}\right\|^{2} \rightarrow 0$. It follows that
$\left\|r_{2 n}-G r_{2 n}\right\|^{2} \leq\left\|r_{2 n}-G * s_{2 n}\right\|^{2}+2\left\|G * s_{2 n}-G r_{2 n}\right\|^{2} \rightarrow 0$
and,
$\left\|\mathrm{z}-\mathrm{Gr}_{2 \mathrm{n}}\right\|^{2} \leq 2\left\|\mathrm{z}-\mathrm{r}_{2 \mathrm{n}}\right\|^{2}+2\left\|r_{2 n}-G * s_{2 n}\right\|^{2} \rightarrow 0$ as $\rightarrow \infty$.
If $\mathrm{r}_{2 n}$ and z satisfy (2.1) we have

```
\(\left\|\operatorname{Gr}_{2 n}-G^{*} z\right\|^{2} \leq \Phi \max \left\{\left\|\mathrm{r}_{2 \mathrm{n}}-\mathrm{z}\right\|^{2},\left\|\mathrm{z}-\mathrm{G}^{*} \mathrm{z}\right\|^{2}\left[1+\left\|\mathrm{r}_{2 \mathrm{n}}-\mathrm{Gr}_{2 \mathrm{n}}\right\|^{2}\right] / 1+\left[\left\|\mathrm{r}_{2 \mathrm{n}}-\mathrm{z}\right\|^{2}\right.\right.\)
    ,\(\left[1+\left\|\mathrm{z}-\mathrm{G}^{*} \mathrm{z}\right\|^{2}\right]\left\|\mathrm{r}_{2 \mathrm{n}}-\mathrm{Gr}_{2 \mathrm{n}}\right\|^{2} / 1+\left[\left\|\mathrm{r}_{2 \mathrm{n}}-\mathrm{z}\right\|^{2}\right.\)
    \(\left.,\left[\left\|\mathrm{r}_{2 \mathrm{n}}-\mathrm{Gr}_{2 \mathrm{n}}\right\|^{2}+\left\|\mathrm{z}-\mathrm{G}^{*} \mathrm{z}\right\|^{2}\right],\left[\left\|\mathrm{r}_{2 \mathrm{n}}-\mathrm{G}^{*} \mathrm{z}\right\|^{2}+\left\|\mathrm{z}-\mathrm{Gr}_{2 \mathrm{n}}\right\|^{2}\right]\right\}\)
\(\left\|\mathrm{Gr}_{2 \mathrm{n}}-\mathrm{G}^{*} \mathrm{z}\right\|^{2} \leq \Phi \max \left\{\left\|\mathrm{r}_{2 \mathrm{n}}-\mathrm{z}\right\|^{2},\left[2\left\|\mathrm{z}-\mathrm{Gr}_{2 \mathrm{n}}\right\|^{2}+2\left\|\mathrm{Gr}_{2 \mathrm{n}}-\mathrm{G}^{*} \mathrm{z}\right\|^{2}\right]\left[1+\left\|\mathrm{r}_{2 \mathrm{n}}-\mathrm{Gr}_{2 \mathrm{n}}\right\|^{2}\right] / 1+\left[\left\|\mathrm{r}_{2 \mathrm{n}}-\mathrm{z}\right\|^{2}\right.\right.\)
, \(\left[1+2\left\|\mathrm{z}-\mathrm{Gr}_{2 \mathrm{n}}\right\|^{2}+2\left\|\mathrm{Gr}_{2 \mathrm{n}}-\mathrm{G}^{*} \mathrm{z}\right\|^{2}\right]\left\|\mathrm{r}_{2 \mathrm{n}}-\mathrm{Gr}_{2 \mathrm{n}}\right\|^{2} / 1+\left[\left\|\mathrm{r}_{2 \mathrm{n}}-\mathrm{z}\right\|^{2}\right.\)
\(\left.,\left[\left\|\mathrm{r}_{2 \mathrm{n}}-\mathrm{Gr}_{2 \mathrm{n}}\right\|^{2}+2\left\|\mathrm{z}-\mathrm{Gr}_{2 \mathrm{n}}\right\|^{2}+2\left\|\mathrm{Gr}_{2 \mathrm{n}}-\mathrm{G}^{*} \mathrm{z}\right\|^{2}\right],\left[\left\|\mathrm{r}_{2 \mathrm{n}}-\mathrm{G}^{*} \mathrm{z}\right\|^{2}+\left\|\mathrm{z}-\mathrm{Gr}_{2 \mathrm{n}}\right\|^{2}\right]\right\}\)
```

Taking the \lim as $n \rightarrow \infty$, we obtain
$\left|\left|G r_{2 n}-G * z\left\|\left.\right|^{2} \leq 2 \Phi| | G r_{2 n}-G * z\right\|\right|^{2}\right.$
$(1-2 \Phi)\left|\left|G r_{2 n}-G * z\right| \|^{2} \leq 0\right.$.
that is, $\left\|G r_{2 n}-G * Z\right\|^{2} \rightarrow 0$
Finally $\left\|\mathrm{z}-\mathrm{G}^{*} \mathrm{z}\right\|^{2}=\left\|\mathrm{z}-\mathrm{Gr}_{2 \mathrm{n}}+\mathrm{Gr}_{2 \mathrm{n}}-\mathrm{G}^{*} \mathrm{z}\right\|^{2}$
$\leq 2\left\|\mathrm{z}-\mathrm{Gr}_{2 \mathrm{n}}\right\|^{2}+\left\|\mathrm{Gr}_{2 \mathrm{n}}-\mathrm{G}^{*} \mathrm{z}\right\|^{2} \rightarrow 0$ as $\mathrm{n} \rightarrow \infty$,
For that $\mathrm{z}=\mathrm{G}^{*} \mathrm{z}$
Proceeding in the same, $\mathrm{z}=\mathrm{Gz}$.
Clearly by definition G and G^{*} have a common fixed point z .
This complete the proof of theorem.
Assuming $G=G^{*}=Z^{*}$ in previous theorem, we obtain the following corollary :
COROLLARY 2.1: Let H^{*} be a Hilbert space, C^{*} be a closed convex subset of H^{*} and Z^{*} be a self mapping in H^{*} into itself satisfying condition 2.1. Taking Φ is arbitrary positive with $0 \leq$ $4 \Phi \leq 1$

If there exists a point r_{0} such that the I-scheme for Z^{*} defined by
$\mathrm{s}_{\mathrm{n}}=\omega_{\mathrm{n}} \mathrm{Z}_{\mathrm{rn}}+\left(1-\omega_{\mathrm{n}}\right) \mathrm{r}_{\mathrm{n}}, \mathrm{n} \geq 0$
$\mathrm{r}_{\mathrm{n}+1}=\left(1-\mu_{\mathrm{n}}\right) \mathrm{r}_{\mathrm{n}}+\mu_{\mathrm{n}} \mathrm{Z}_{\mathrm{sn}}, \mathrm{n} \geq 0$
converges to a point p, then p is the fixed point of Z^{*}.

In the I- scheme , $\left\{\mu_{\mathrm{n}}\right\},\left\{\omega_{\mathrm{n}}\right\}$ satisfy $0 \leq \mu_{\mathrm{n}} \leq \omega_{\mathrm{n}} \leq 1$ for all n .
$\lim _{n \rightarrow \infty} \omega_{\mathrm{n} .} \sum \omega_{n} \mu_{n}=0$ Assuming that
(i) $0 \leq \omega_{n}, \mu_{n} \leq 1$, for all n .
(ii) $\lim \omega_{\mathrm{n}}=\omega>0$,
(iii) $\lim \mu_{\mathrm{n}}=\mu>1$.

The proof is similar to above Theorem, Hence we omit the details.

CONFLICT OF INTEREST . There is no conflict of interest.

REFERENCES

[1].Ciric, Lj.B.,(1971), Generalized contraction and fixed point theorem, Publ .Inst. Math. Vol. 12(26),19-26.
[2] Das, B.K. and Gupta, S.(1975), An extension of Banach contraction principal through rational expression , Indian Journal of Pure and Applied Math. Vol.6, 1455-1458.
[3] Dixit,H. and Bhargav,R.(2017), Fixed point theorems for self mappings in Hilbert space, International Journal of Research and Scientific Innovation, Volume IV, Issue VI,107-110.
[4] Imdad, M. and.Ali, J.(2005), A note on a fixed point theorem in Hilbert spaces, Thai Journal of Mathematics Vol. 3 ,No. 2 : 219-221.
[5] Koparde, P.V. and Waghmode, B.B. (1991): On sequence of mappings in Hilbert space, The Mathematics Education, XXV, 197.
[6] Koparde, P.V. and Waghmode, B.B. (1991): Kannan type mappings in Hilbert spaces, Scientist Phyl. Sciences Vol.3, No.1, 45-50.
[7] Modi G. and Gupta R.N. (2015): Some results on Fixed Point Theorem in Hilbert Space, International Journal of Modern Sci. and Engg. Tech. Vol. 2 pp 1-7.
[8] Naimpally, S.A. and Singh, K.L.(1983), Extensions of some fixed point theorems of Rhoades, J.Math.Anal.Vol.96, 437-446.
[9] Nigam, S. K. ,. Bawa, N. P. S and Shrivastava, P. K. (2003), Fixed point theorems in Hilbert space, Varhahmihir J. Math. Sci.,Vol. 3(1), 113-118.
[10] Pandhare, D.M. and Waghmode, B.B. (1998): On sequence of mappings in Hilbert space, The Mathematics Education, XXXII, 61.
[11] Park, S.(1980), Fixed points and periodic points of contractive pairs of maps, Proc. College Nat. Sci., Seoul Nat. Univ., Vol.5(1) 9-22.
[12] Patel, M. and Sharma, S. (2017), Fixed point theorem in Hilbert space using weak and strong convergence, Global Journal of Pure and Applied Mathematics, Vol.13, No. 9 pp. 5183-5193.
[13] Rao, N. ,Kalyani, K. and Acharyulu, K.V. (2015), A unique fixed point theorem in Hilbert space. Acta Cienc Indic Vol.41pp.39-46.
[14] Rhoades, B. E. (1977), A comparison of various definitions of contractive mappings, Trans. Amer. Math. Soc., Vol.226, pp. 257-290.
[15] Rhoades, B. E. (1983), Contraction definitions revisited, Contemporary Math.,Vol.21, pp189-205.
[16] Sangar, V.M. and Waghmode, B.B. (1991): Fixed point theorem for commuting mappings in Hilbert space-I, Scientist Phyl. Sciences Vol.3, No.1, 64-66.
[17] Sayyed, F. and Badshah, V.H (2001), Generalized contraction and common fixed point theorem in Hilbert space, J.Indian.Acad.Math.,Vol.23,No.2,pp-267-275.
[18] Sayyed,S.A. and Badshah,V.H (2005), Generalization of common fixed point theorem of Naimpally and Singh, Ultra Science, Vol.17(3), pp.461-464.
[19] Sayyed,S.A. and Badshah,V.H (2005), Common Fixed Point Iteration Process In Hilbert Space, Vikram Mathematical Journal ,Vol.25, pp. 160-165.
[20] Sayyed,S.A. and Badshah,V.H (2005), Extensions Of Some Common Fixed Point Theorems In Hilbert Space". Jnanabha, Vol.35, pp. 129-132.
[21] Sayyed, S.A., Devghare, K. and Badshah, V.H.(2006), A Note On Fixed Point For Selfmaps, Acta Ciencia Indica, Vol. XXXII M, No. 4, pp.1595-1596.
[22] Sayyed, S.A., Vyas.,L , Sayyed, F. and Badshah,V.H. (2012), Some Results On Fixed Point Theorems For Selfmaps Ultra Engineer, Vol. 1 (2),pp143-145.
[23] Sharma, A.K., Badshah, V.H and Gupta, V.K. (2014): Common fixed point theorems in Hilbert space, International Academy of Sciences, Engg. And Tech, Vol. 3 pp 63-70.
[24] Veerapandi, T., and Kumar, S.A.(1999), Common fixed point theorems of a sequence of mappings on Hilbert space. Bull Calcutta Math Soc Vol.91,pp.299-308.
[25] Yadav, H., Sayyed, S.A. and Badshah,V.H.(2010), A Note On Common Fixed Point Theorem In Hilbert Space ,Material Science Research India Vol . 7 No.2,pp.515-518.

Email:- editorijrim@gmail.com, http://www.euroasiapub.org

