EURO ASIA RDA International Journal of Research in Economics and Social Sciences(IJRESS) Available online at: http://euroasiapub.org Vol. 13 Issue 1, January- 2023 ISSN(o): 2249-7382 | Impact Factor: 8.018 (An open access scholarly, peer-reviewed, interdisciplinary, monthly, and fully refereed journal.)

"Bioactive Constituents from Swertia Cuneata"

Phool Singh Rajpoot Professor Department of Chemistry Govt. P.G. College, Chharra, Aligarh, U.P. (India)

Abstracts

In India, SwertiaCuneata (Gentianaceae) commonly, known as Chirata is used as Crude drugs. 1,5 dihydroxy-3 8 dimethoxyxanthone has been isolated from areal parts of S. Cuneata. Besides two compounds oleanolicacid and ursolic acid have been isolated and indentified by means of chemical, I.R., ¹H NMR, ¹³C NMR and Mass Spectral studies.

Introduction

Swertiacuneata (Gentianaceae) an another species of S. chirayata which grow at an altitude of 12000-17000 ft. in the glacier region of Kumaon Himalaya (Oleg. polumin et al., 1984). It is an erect herb. It was collected from Millam glaciers at an altitude of 16000-17000 ft..Swertiacuneata is used in the folk as a blood purifier, antimalarial, anti-inflammatory, febrifuge etc.

K.S. Khetwal, D.L. Verma (1990) reported chemical screening of this plant and found rich in xanthones and triterpenoids. K.S. Khetwal and SunitaPande (1997) isolated bioactive xanthones 1-hydroxy-3, 7, 8- trimethoxy-xanthone; 1, 7, 8-trihydroxy-3-methoxy-xanthone; 1,8-dihydroxy- 3,5-dimethoxy-xanthone; 1, 8-dihydroxy-3, 7-dimethoxy-xanthone along witha new xanthone glycoside, 1-glucosyloxy-3, 7, 8-trimethoxy-xanthone.However, no references regarding chemical investigation of S. cuneata exist in literature.

Plant Material

S. Cuneata was collected in the month of August – September at an altitude of 16500 ft. from Milam glaciers of Kumaon Himalaya in Uttaranchal (India). It was identified in division of Botany, CDRI Lucknow.

Experimental

Extraction and isolation - Shade dried whole plant was pulvarised and Soxhletextracted with 80% MeOH. The extract was concentrated in vaccuo and then partitioned between $CHCl_3 : H_2O(1 : 1)$ the $CHCl_3$ layer was separated, concentrated and the residuce was further extracted with Pet ether. (60-80°C). Elution was carriedout with Pet. Ether, benzene and ethyl acetate in different properties xanthones appeared by eluting the colours with benzene.

Seperation – Major fractions were separated in Silica gel G (Glaxo 60×120 mesh) CC and purified TLC and HPLC. UV spectra was recovered in MeOH with addition of NaOAC, AlCl₃ and HCl as required I.R. in Perkin Elmer model 298 as KBrPollets. ¹H NMR in and 40 MH both in CDCl3 wing TMS as internal sterol and EIMS is Jeol MS-300 instrument by direct inlet at 70.

International Journal of Research in Economics and Social Sciences(IJRESS)

Available online at: http://euroasiapub.org RESEARCHER Vol. 13 Issue 1, January- 2023 ISSN(o): 2249-7382 | Impact Factor: 8.018

(An open access scholarly, peer-reviewed, interdisciplinary, monthly, and fully refereed journal.)

RESULT AND DISCUSSION

- **1.** Molecular formula $C_{30}H_{48}O_3$: 2. Molecular Weight $456 (M^{+})$: **3. Melting Point** 303°C - 304°C :
- **4.** Colour Reactions I.
 - It did not give Molish test for glycosides.
- II. On treatment with acetic anhydride and sulphuric acid in chloroform solution it gave pink colour under UV light (365nm)
- Chloroform solution of compound fluoresced blue green when treated with few drops of III. H₂SO₄, indicating the tri-terpenoid nature of the compound.
- IV. Compound gave yellow colour with tetra nitromethane, indicating unsaturation in the compound.

1384

1274

1180

1020

Spectral Studies

- 1. **Mass Spectra :** 423, 248, 220, 219, 207, 203, 133
- **Fragment Patterns -**2. I. R.Spectra : $v(cm^{-1})$ 3359 (OH) 2943 2866 1691 1463

¹H NMR Spectra

3

EIMS: Molecular ion peak at 456 $(M)^+$ 441, 438,

- 441 [M-15], 438[M-18], 423 [M-33]
- v (KBr) cm^{-1} $v(cm^{-1})$

3.	¹ H NMR Spectra:	(CDCI, and TMS as internal standard)
8(ppm)		
	0.76	
	0.77	
	0.90	
	0.91 (3H, eac	h, s, 7 X CH,)
	0.92	
	0.98	
	1.13	
	2.81 (1H, d, J= 4Hz, H-18)
	3.24 (1H, t, J= 5 Hz, CHOH)
	4.27 (1H, t, J= 5Hz, H-12) an olefinic proton
4.	¹³ C NMR Spectra :	(CDCI ₃ and TMS as internal standard)

International Journal of Research in Economics and Social Sciences(IJRESS)

Vol. 13 Issue 1, January- 2023 ISSN(o): 2249-7382 | Impact Factor: 8.018

Available online at: http://euroasiapub.org

(An open access scholarly, peer-reviewed, interdisciplinary, monthly, and fully refereed journal.)

Carbon atom	δ(ppm)	Carbon atom	δ(ppm)
C-1	38.5	C-2	27.2
C-3	79.1	C-4	38.8
C-5	53.4	C-6	18.3
C-7	32.5	C-8	39.4
C-9	47.7	C-10	37.2
C-11	23.0	C-12	122.7
C-13	143.6	C-14	41.8
C-15	27.8	C-16	23.4
C-17	46.6	C-18	41.2
C-19	46.0	C-20	30.7
C-21	33.9	C-22	32.7
C-23	28.1	C-24	15.5
C-25	15.3	C-26	17.2
C-27	25.9	C-28	183.4
C-29	33.1	C-30	23.6

On the basis of spectral studies $- {}^{1}H$ NMR, ${}^{13}C$ NMR, I R., Mass spectra and comparing these values with literature search **compound 1** wasidentified as -**Oleanolic acid.**

Oleanolic acid

The above **compound 1** was also identified by means of CM-MS.

In addition of this compound a new Xanthone 1, 5 dihydroxy -3, 8 – dimethoxyxanthone and 1, 8 dihydroxy -3, 5 dimethoxy-xanthones were isolated for the first time.

International Journal of Research in Economics and Social Sciences(IJRESS)

Available online at: http://euroasiapub.org Vol. 13 Issue 1, January- 2023 ISSN(o): 2249-7382 | Impact Factor: 8.018 (An open access scholarly, peer-reviewed, interdisciplinary, monthly, and fully refereed journal.)

Acknowledgement – The Author are grateful of RSIC, CDRI Lucknowfor Spectral result and Prof. K. S. KhetwalKumaon University Nainital. **References:**

- 1. Afzal M & Al-Hassan J M, Heterocycles, 14, 1980, 117
- 2. Khetwal K S, Joshi Binita&Bisht R S. Phytochemistry, 29, 2 1990, 1265.
- 3. Hastettnann K & Wagner H. Phytochemistry, 16, 1977, 821.
- 4. Khetwal KS & PandeSunita, Indian J Chem. 36B, 1997, 833.
- 5. Ghosal S, Sharma P V & Chadhury R K. J PharmaSci, 63, 1974, 1286.
- 6. Miura I, Hostettmann K & Nakanishi K, Nouv J Chim, 2. 1978, 653.
- 7. Ghosal S, Chauhan P S, Biswas K & Chadhury P K. Phytochemistry, 15, 1976, 1041.
- 8. Arends P, Helboe P & Moller, J Org Mass Spectrom, 7, 1973, 667.
- 9. Dalal S R & Shah R C, Chem&Ind (London), 1956, 664.
- 10. Dalal S R & Shah R C, Chem&Ind (London), 1957, 140.
- 11. Khetwal K S, Mani Neelima& Pant N, Indian J Chem, 39B. 2000, 448.
- 12. Bhattacjarua. S.K., Sanyal A.K. and Ghosal A.K., Drugs and Central Synaptics Transmission 1976 P. 333
- 13. Chakravarty A.K. and Binayl Das, Masuala K, Tetrahedron letters, 1990, 31 (32), 7649-7652.
- 14. Goyl H. et. al, J. Res. Ayur and Sidha, 1981 2 (3), 286
- 15. Mukerji, S.K. Mukerji B., Int. J. Crude Drug Res. 1987, 25, 97.
- 16. P.S. Rajpoot, K. S. Khetwal Indian J. of Chemistry Vol. 42 B, April 2003 PP. 953-955.