"OVERALL STABILITY CONSTANTS AND OTHER RELATED CONSTANTS OF SOME COMPLEXES IN CO-ORDINATION CHEMISTRY"

K. Kumar and D.K. Dwivedi
Department of Chemistry,Pt. S.N.S. Govt. PG College Shahdol

(A.P.S. University Rewa, M. P. India.)

Abstract

The stepwise stability constants and their overall stability constants with related constant like hydrolytic constants have very significant role to understand theformationof species during complexation process and this study wasmade completedby potentiometric titration followed by SCOGS computer programme showing stable complexes in species distribution curves which are a graphical way to know how a complex is formed in aqueous medium.

Keywords: Overall stability constant, Hydrolytic constant,species distribution curves, SCOGS.
Introduction: In coordination chemistry any complex is formed in a specific step and each step has its specific stability value and then an overall stability constant would be calculated with other related constants. In the present paper we study about the complex formed through interaction among ternary complexation in two different ratios of MAB (1:1:1) and (1:2:1) and quaternary complexation of MMABin (1:1:1:) molar ratio.Here we studiedabout thestability constantof some binary, ternary and quaternary compounds of bivalent Pband Hg metal ions with bio ligand 2- amino 3-(4-hydroxyphenyl) propanoic acid (2-AHPPA) which is a non-essential amino acid with a polar side group and a number of studies have found that it would be useful during conditions of stress, cold, fatigue ${ }^{1}$ loss of a loved one such as in death or divorce, prolonged work and sleep deprivation ${ }^{2}$ and 2 - amino succinic acid(2-ASA)acts as a neurotransmitters ${ }^{3}$ used as primary ligand A while2,4dihydroxopyrimidine (2,4-DHP). a pyrimidine base of RNA used as secondary ligandB.

Materials and Procedures:

For our study we prepare some solutions with different ratios as follows:
Acid Solution: $5 \mathrm{~mL} \mathrm{NaNO} 3(1.0 \mathrm{M})+5 \mathrm{~mL} \mathrm{HNO}_{3}(0.02 \mathrm{M})+\mathrm{H}_{2} \mathrm{O}$
Ligand (A) Solution: I- $5 \mathrm{~mL} \mathrm{NaNO}_{3}(1.0 \mathrm{M})+5 \mathrm{~mL} \mathrm{HNO}_{3}(0.02 \mathrm{M})+\underline{5 m L} 2$-AHPPA (A) $)(0.01 \mathrm{M})+\mathrm{H}_{2} \mathrm{O}$
Ligand (A) Solution: II- $5 \mathrm{~mL} \mathrm{NaNO}_{3}(1.0 \mathrm{M})+5 \mathrm{~mL} \mathrm{HNO}_{3}(0.02 \mathrm{M})+\underline{5 m L} 2-\mathrm{ASA}(\mathrm{A})(0.01 \mathrm{M})+\mathrm{H}_{2} \mathrm{O}$

Ligand (B) solution: III- $5 \mathrm{~mL} \mathrm{NaNO}_{3}(1.0 \mathrm{M})+5 \mathrm{~mL} \mathrm{HNO}_{3}(0.02 \mathrm{M})+5 \mathrm{~mL} 2,4-\mathrm{DHP}(\mathrm{B})(0.01 \mathrm{M})+\mathrm{H}_{2} \mathrm{O}$
Binary Solution: I - $5 \mathrm{~mL} \mathrm{NaNO} 3(1.0 \mathrm{M})+5 \mathrm{~mL} \mathrm{HNO}_{3}(0.02 \mathrm{M})+5 m L 2-A H P P A$ (A) $(0.01 \mathrm{M})+5 \mathrm{~mL} \mathrm{Hg} / \mathrm{Pb}$ (II) $(0.01 \mathrm{M})+\mathrm{H}_{2} \mathrm{O}$

$\mathrm{H}_{2} \mathrm{O}$

Binary Solution: III $-5 \mathrm{~mL} \mathrm{NaNO}_{3}(1.0 \mathrm{M})+5 \mathrm{~mL} \mathrm{HNO}_{3}(0.02 \mathrm{M})+5 \mathrm{~mL} 2,4-\mathrm{DHP}(\mathrm{B})(0.01 \mathrm{M})+5 \mathrm{~mL} \mathrm{Hg} / \mathrm{Pb}$ (II) $(0.01 \mathrm{M})+\mathrm{H}_{2} \mathrm{O}$

Ternary Solution: (1:1:1): $5 \mathrm{~mL} \mathrm{NaNO}_{3}(1.0 \mathrm{M})+5 \mathrm{~mL} \mathrm{HNO}_{3}(0.02 \mathrm{M})+5 \boldsymbol{m L} \mathbf{2 - A \boldsymbol { H P P A }}(\boldsymbol{A})(0.01 \mathrm{M})+5 \mathrm{~mL}$ $\mathrm{Hg} / \mathrm{Pb}($ II $)(0.01 \mathrm{M})+5 \mathrm{~mL} 2,4-\mathrm{DHP}(\mathrm{B})(0.01 \mathrm{M})+\mathrm{H}_{2} \mathrm{O}$

Ternary Solution: (1:2:1): $5 \mathrm{~mL} \mathrm{NaNO}_{3}(1.0 \mathrm{M})+5 \mathrm{~mL} \mathrm{HNO}_{3}(0.02 \mathrm{M})+\underline{\mathbf{1 0} \boldsymbol{m L} 2-\boldsymbol{A S A}(\boldsymbol{A})}(0.01 \mathrm{M})+5 \mathrm{~mL} \mathrm{~Pb}$ (II) $(0.01 \mathrm{M})+5 \mathrm{~mL} 2,4-\mathrm{DHP}$ (B) $(0.01 \mathrm{M})+\mathrm{H}_{2} \mathrm{O}$

Quaternary Solution: (1:1:1:1): $5 \mathrm{~mL} \mathrm{NaNO}_{3}(1.0 \mathrm{M})+5 \mathrm{~mL} \mathrm{HNO}_{3}(0.02 \mathrm{M})+5 \mathrm{~mL} 2$-ASA (A) $(0.01 \mathrm{M})+5$ mL Hg (II) $(0.01 \mathrm{M})+5 \mathrm{~mL} 2,4-\mathrm{DHP}($ B $)(0.01 \mathrm{M})+5 \mathrm{~mL} \mathrm{~Pb}$ (II) $(0.01 \mathrm{M})+\mathrm{H}_{2} \mathrm{O}$

The concept of stability constant in chemical equilibrium between a metal ion ' M ' and a ligand ' L ' in gaseous phase was introduced by Abegg and Bodlander ${ }^{4,5}$ for a reaction of the type.

$$
\begin{equation*}
\mathrm{M}_{(\mathrm{g})}+\mathrm{nL}_{(\mathrm{g})} \mathrm{ML}_{\mathrm{n}(\mathrm{~g})} . \tag{1}
\end{equation*}
$$

Formation of complex in solution proceeds by the stepwise addition of the ligands to the metal ion, a number of successive equilibria can be formulated. The above equilibrium may generally be written in a more convenient form as,

$$
\begin{align*}
& \mathrm{M}+\mathrm{L} \quad \mathrm{ML} \rightleftharpoons \\
& \mathrm{ML}+\mathrm{L} \quad \mathrm{ML}_{2} \\
& \mathrm{ML}_{2}+\mathrm{L} \rightleftharpoons \mathrm{ML}_{3} \\
& \mathrm{ML}_{\mathrm{n}-1}+\mathrm{L} \rightleftharpoons \mathrm{ML}_{\mathrm{n}} \tag{2}
\end{align*}
$$

From Law of Mass Action,
[ML]
$\mathrm{K}_{1}=$
[M] [L]
$\mathrm{K}_{2}=\frac{\left[\mathrm{ML}_{2}\right]}{[\mathrm{ML}][\mathrm{L}]}$ $\left[\mathrm{ML}_{3}\right]$
$\mathrm{K}_{3}=$
[ML_{2}] [L]
$\mathrm{K}_{\mathrm{n}}=\frac{\left[\mathrm{ML}_{\mathrm{n}}\right]}{\left[\mathrm{ML}_{\mathrm{n}-1}\right][\mathrm{L}]}$
Where n represents the coordination number of the metal ions, terms in bracket [] refers to the
activities of different species and $\mathrm{K}_{1}, \mathrm{~K}_{2}, \mathrm{~K}_{3} \ldots \ldots \ldots . . \mathrm{K}_{\mathrm{n}}$ are thermodynamic stepwise stability constant or formation constant.

$$
\begin{equation*}
\beta \mathrm{n}=\frac{\left[\mathrm{ML}_{\mathrm{n}}\right]}{[\mathrm{M}][\mathrm{L}]}{ }^{\mathrm{n}} \tag{4}
\end{equation*}
$$

where $\beta \mathrm{n}$ (overall stability constant) is the product of stepwise formation constant $\left(\mathrm{K}_{1}, \mathrm{~K}_{2}\right.$, $\left.K_{3}, \ldots \ldots . K_{n}\right)$.

RESULTS AND DISCUSSION

In this work the metal solution were standardized by EDTA titrations ${ }^{6}$ while the potentiometric titration were completed with the help of Bjerrum's ${ }^{7}$ method modified by Irving \& Rossoti Technique ${ }^{8,9}$ using an electric digital pH meter (Eutech 501) having a reproducibility of ± 0.01. The overall stability constants of investigated complexes were calculated by using SCOGS $^{10-12}$ (Stability constant of generalized species) computer programme.Some other research workers ${ }^{13-18}$ also studied in this field.

The titration and species distribution curves were sketched by using computer program named as ORIGIN 6.0. Titration curves were plotted by taking pH value of acid, ligand, binary ternary and quaternarycomplexes vs. volume of NaOH and species distribution curves were plotted by taking percent (\%) concentration of the species against pH .

Table 1
Pb (II)- 2-AHPPA (A) - 2,4-DHP (B) (1:1:1) Ternary System

Volume of $\mathbf{N a O H}(\mathbf{m L})$	$\mathbf{p H}$			
	\mathbf{A}	\mathbf{B}	\mathbf{C}	\mathbf{D}
0.0	2.52	2.74	2.61	3.05
0.2	2.62	2.86	2.84	3.36
0.4	2.73	3.04	3.12	3.89
0.6	2.87	3.37	3.37	4.18
0.8	3.11	5.84	3.54	4.67
1.0	3.65	8.68	3.89	5.38

1.2	9.70	9.20	4.14	6.12
1.4	10.29	9.61	4.36	6.49
1.6	10.53	9.95	4.53	6.87
1.8	10.68	10.20	5.02	7.24
2.0	10.79	10.39	5.29	7.83
2.2	10.88	10.54	5.49	8.43
2.4	10.95	10.66	6.37	8.92
2.6	11.00	10.75	7.04	9.26
2.8	11.05	10.83	7.68	9.41
3.0	11.10	10.89	8.12	9.97
3.2	11.14	10.95	8.49	10.19
3.4		10.99	9.25	10.42
3.6		11.04	10.28	10.56
3.8		11.07	10.47	10.67
4.0		11.10	10.52	10.82
4.2			10.54	10.93

Table 2
Pb (II)- 2-ASA (A) - 2,4-DHP (B) (1:2:1) Ternary System

Volume of $\mathbf{N a O H}(\mathbf{m L})$	$\mathbf{p H}$			
	A	\mathbf{B}	\mathbf{C}	\mathbf{D}
0.0	2.52	2.61	2.41	2.99
0.2	2.62	2.72	2.65	3.07
0.4	2.73	2.85	2.70	3.16

International Journal of Research in Economics \& Social Sciences
130
http://www.euroasiapub.org

0.6	2.87	3.02	3.75	3.27
0.8	3.11	3.26	3.86	3.36
1.0	3.65	3.60	4.93	3.57
1.2	9.70	4.20	5.12	3.76
1.4	10.29	8.54	6.31	3.99
1.6	10.53	9.40	7.56	4.27
1.8	10.68	9.89	8.74	4.69
2.0	10.79	10.24	9.08	5.69
2.2	10.88	10.47	9.38	6.80
2.4	10.95	10.63	10.21	7.67
2.6	11.00	10.74	10.32	8.63
2.8	11.05	10.83	10.63	8.99
3.0	11.10	10.91	10.74	9.27
3.2	11.14	10.97	10.86	9.49
3.4				9.66
3.6			9.83	

Table 3
$\mathbf{H g}(\mathbf{I I})$ - Pb (II)- 2-ASA (A) - 2,4 -DHP (B) (1:1:1:1) Quaternarysystem

Volume of $\mathbf{N a O H}(\mathbf{m L})$	$\mathbf{p H}$				
	\mathbf{A}	\mathbf{B}	\mathbf{C}	\mathbf{D}	\mathbf{E}
0.0	2.52	2.61	2.63	2.48	2.75
0.2	2.62	2.72	2.77	2.61	2.82
0.4	2.73	2.85	2.92	2.73	2.90

International Journal of Research in Economics \& Social Sciences

0.6	2.87	3.02	3.12	2.87	2.99
0.8	3.11	3.26	3.40	3.05	3.10
1.0	3.65	3.60	3.80	3.29	3.25
1.2	9.70	4.20	4.42	3.60	3.45
1.4	10.29	8.54	5.36	4.03	3.79
1.6	10.53	9.40	6.09	4.62	4.40
1.8	10.68	9.89	6.70	5.32	5.70
2.0	10.79	10.24	7.41	5.91	6.90
2.2	10.88	10.47	9.07	6.50	7.73
2.4	10.95	10.63	9.70	8.63	9.23
2.6	11.00	10.74	10.04	9.35	9.81
2.8	11.05	10.83	10.27	9.75	10.25
3.0	11.10	10.91	10.43	10.04	10.55
3.2	11.14	10.97	10.56	10.25	10.85
3.4			10.66	10.40	10.98
3.6			10.74	10.51	
3.8			10.81	10.61	
4.0			10.87	10.69	
4.2			10.92	10.75	
4.4			10.97	10.81	
4.6		11.00	10.87		
4.8		11.04	10.92		

International Journal of Research in Economics \& Social Sciences

Fig1 - Potentiometric titration Curves of 1:1:1 Pb (II)- 2-AHPPA (A)- 2,4-DHP (B) System
(A) Acid (B) Ligand

(C) Pb (II)-2-AHPPA (D) Pb (II)-2-
AHPPA- 2,4-DHP

Fig.2- Potentiometric titration Curves of 1:2:1 Pb (II) - 2-ASA (A) - 2,4-DHP (B)System

International Journal of Research in Economics \& Social Sciences

Fig. 3- Titration Curves of 1:1:1:1 Hg (II)-Pb (II) - 2-ASA(A)- 2, 4 -DHP(B) system
(A) Acid (B) Ligand (C) Hg (II)- 2-ASA(D) Hg (II)- 2-ASA- 2, 4 -DHP
(E) Hg (II)- Pb (II) -2-ASA - 2, 4 -DHP

SPECIES DISTRIBUTION CURVES:

Pb (II)- 2-AHPPA (A) - 2, 4- DHP(B)(1:1:1) Ternary System

For the present system species distribution curves are represented in fig. 4.
In this system following species are identified. protonated ligand species; $\mathrm{H}_{3} \mathrm{~A}, \mathrm{H}_{2} \mathrm{~A}, \mathrm{HA}$ and BH , free metal ion species: Pb^{2+} (aq.). binary species: $\mathrm{Pb} \mathrm{A}, \mathrm{Pb} B$
ternary species Pb A B .
In this system binary species PbA shows its maximum concentration very low amount but another binary complex Pb B shows its maximum concentration $\sim 98 \%$ at beginning of titration which gradually decreases.

In this system ternary complex of PbAB is major species having concentration $\sim 84 \%$ at higher $\mathrm{pH} \sim$ 9.9. In present system protonated ligand species and free metal ion species shows its remarkable presence.

- Pb (II)-2-ASA (A) - 2, 4-DHP(B) (1:2:1) Ternary System

For the present system species distribution curve are represented in fig. 5.
In this systemspecies distribution curves reveal the existence of protonated ligand species $H_{3} A, H_{2} A$, HA and BH , free metal ion, binary $\mathrm{Pb} \mathrm{A}, \mathrm{Pb} \mathrm{B}$ and ternary complex species Pb AB in the variable concentration profile. Binary complex of Pb A shows its maximum concentration $\sim 19 \%$ at $\mathrm{pH} \sim 5.6$ while the binary complex of Pb B shows maximum concentration $\sim 91 \%$ at very start of titration which is gradually decreases with rise in $\mathrm{pH} . \mathrm{H}_{2} \mathrm{~A}$ species have the maximum concentration $\sim 70 \%$ at the start of titration. H A shows maximum concentration $\sim 79 \%$ at $\sim 5.5 \mathrm{pH}$. The ternary complex shows maximum concentration $\sim 88 \%$ at the higher $\mathrm{pH} \sim 9.7$.

$\underline{H g(I I)-P b}(I I)$-2-ASA(A)-2, 4-DHP (B)(1:1:1:1) Quaternary System

The fig 6 . shows the distribution diagram of present system .In this system $\mathrm{Hg}^{2+}, \mathrm{Pb}^{2+} \mathrm{H}_{2} \mathrm{~A}, \mathrm{HA}, \mathrm{Hg}(\mathrm{OH})_{2}, \mathrm{Hg}$
$\mathrm{A}, \mathrm{HgB}, \mathrm{PbA}, \mathrm{PbB}, \mathrm{HgAB}, \mathrm{PbAB}$ and Hg Pb AB species were identified.
The ternary complexes of PbAB existed in very good amount attaining maximum concentration $\sim 90 \%$ at the \sim 9.7 pH value. Hg AB exit in low amount $\sim 12 \%$ at the $\sim 9.0 \mathrm{pH}$. The major species which is quaternary complex of $\mathrm{Hg} \mathrm{Pb} \mathrm{AB} \mathrm{attain} \mathrm{the} \mathrm{maximum} \mathrm{concentration} \sim 98 \%$ at the $\sim 4.8 \mathrm{pH}$. Binary complex of Hg with ligand B have their existence $\sim 10.0 \%$ at the $\mathrm{pH} \sim 9.4$ while the another binary complex Hg A shows low amount $\sim 2.0 \%$ at the $\mathrm{pH} \sim 6.5$. Complex PB- A attain maximum concentration $\sim 10 \%$ at the $\mathrm{pH} \sim 8.6$ while the Pb B complex attain the maximum concentration $\sim 11 \%$ at the $\sim 9.2 \mathrm{pH}$ value.

Fig 4 - Distribution Curves of 1:1:1 Pb (II)-2-ASA(A) - 2,4-DHP (B)System

Fig 5- Distribution Curves of 1:2:1 Pb (II)-2-ASA (A) - 2,4-DHP (B) System
(1) $\mathbf{P b}^{2+}$
(2) $\mathrm{H}_{3} \mathrm{~A}$
(3)
$\mathrm{H}_{2} \mathrm{~A}(4) \mathrm{HA}$
(5) HB (6)Pb A (7)PbB (8) PbAB

Fig 6- Distribution Curves of 1:1:1:1 Hg(II)-Pb (II) -2-ASA(A)- 2, 4-DHP (B) System
(1) Hg^{2+} (II) (2) Pb^{2+} (II) (3) $\mathrm{H}_{2} \mathrm{~A}$ (4) $\mathrm{HA}(5) \mathrm{Hg}(\mathrm{OH})_{2}(6) \mathrm{Hg} \mathrm{A}$ (7) $\mathrm{Hg} \mathrm{B}(8) \mathrm{Pb} \mathrm{A}(9) \mathrm{Pb}$ B (10) Hg AB (11) Pb A B(12) Hg Pb AB

Equilibria of complex formation:

Formation of Binary Complexes:

$\mathrm{Pb}^{++}+2-\mathrm{ASA}\left(\mathrm{H}_{2} \mathrm{~A}\right) \quad$ ($\left.\mathrm{Pb}-2-\mathrm{ASA}\right]+2 \mathrm{H}^{+}$
$\mathrm{Pb}^{++}+2,4-\mathrm{DHP}\left(\mathrm{BH}^{-}\right) \quad[\mathrm{Pb}-2,4-\mathrm{DHP}]+\mathrm{H}^{+}$
$\mathrm{Hg}^{++}+2-\mathrm{ASA}\left(\mathrm{H}_{2} \mathrm{~A}\right) \quad$ Hg-2-ASA] $+2 \mathrm{H}^{+}$
$\mathrm{Hg}^{++}+2,4-\mathrm{DHP}\left(\mathrm{BH}^{-}\right) \quad[\mathrm{Hg}-2,4-\mathrm{DHP}]+\mathrm{H}^{+}$
$\mathrm{Pb}^{++}+2$-AHPPA $\left(\mathrm{H}_{2} \mathrm{~A}\right) \quad$ 进b-2-AHPPA] $+2 \mathrm{H}^{+}$
$\mathrm{Pb}^{++}+2,4-\mathrm{DHP}\left(\mathrm{BH}^{-}\right) \quad[\mathrm{P} 6-2,4-\mathrm{DHP}]+\mathrm{H}^{+}$

Ternary Complex Formed Through Two Ways:

$[\mathrm{Pb}-2-\mathrm{ASA}]+\mathrm{BH}^{-} \leftrightharpoons[\mathrm{Pb}-2-\mathrm{ASA}-2,4-\mathrm{DHP}]+\mathrm{H}^{+}$
$\mathrm{Pb}^{++}+2-\mathrm{ASA}\left(\mathrm{H}_{2} \mathrm{~A}\right)+2,4-\mathrm{DHP}\left(\mathrm{BH}^{-}\right) \quad\left[\mathrm{R}_{2} 2-\mathrm{ASA}-2,4-\mathrm{DHP}\right]+3 \mathrm{H}^{+}$
$[\mathrm{Hg}-2-\mathrm{ASA}]+\mathrm{BH}^{-} \leftrightharpoons[\mathrm{Hg}-2-\mathrm{ASA}-2,4-\mathrm{DHP}]+\mathrm{H}^{+}$
$\mathrm{Hg}^{++}+2-\mathrm{ASA}\left(\mathrm{H}_{2} \mathrm{~A}\right)+2,4-\mathrm{DHP}\left(\mathrm{BH}^{-}\right) \quad[\mathrm{Hg}-2-\mathrm{ASA}-2,4-\mathrm{DHP}]+3 \mathrm{H}^{+}$
$[\mathrm{Pb}-2-\mathrm{AHPPA}]+\mathrm{BH}^{-} \leftrightharpoons[\mathrm{Pb}-2-\mathrm{AHPPA} 2,4-\mathrm{DHP}]+\mathrm{H}^{+}$
$\mathrm{Pb}^{++}+2$ - $\mathrm{AHPPA}\left(\mathrm{H}_{2} \mathrm{~A}\right)+2,4-\mathrm{DHP}\left(\mathrm{BH}^{-}\right) \quad[\mathrm{Pb}-2$-AHPPA $-2,4-\mathrm{DHP}]+3 \mathrm{H}^{+}$

Quaternary complex formed through two ways:

$$
\left[2-\mathrm{ASA}\left(\mathrm{H}_{2} \mathrm{~A}\right)\right]+\mathrm{Hg}^{++}+2,4-\mathrm{DHP}\left(\mathrm{BH}^{-}\right)+\mathrm{Pb}^{++}[\mathrm{Hg}-\mathrm{P}-\mathrm{ASA}-2,4-\mathrm{DHP}]+3 \mathrm{H}^{+}
$$

$\left.[\mathrm{Hg}-2-\mathrm{ASA}]+\mathrm{Pb}^{++}+2,4-\mathrm{DHP}\left(\mathrm{BH}^{-}\right) \quad 4 \mathrm{Hg}-\mathrm{Pb}-2-\mathrm{ASA}-2,4-\mathrm{DHP}\right]+\mathrm{H}^{+}$

General hydrolytic equilibria are as follow:

$$
\begin{array}{lc}
\mathrm{Hg}^{++}+\mathrm{H}_{2} \mathrm{O} & \leftrightharpoons \mathrm{Hg}(\mathrm{OH})^{+}+\mathrm{H}^{+} \\
\mathrm{Hg}^{++}+2 \mathrm{H}_{2} \mathrm{O} & \leftrightharpoons \mathrm{Hg}(\mathrm{OH})_{2}+2 \mathrm{H}^{+} \\
\mathrm{Pb}^{++}+\mathrm{H}_{2} \mathrm{O} & \leftrightharpoons \mathrm{~Pb}(\mathrm{OH})^{+}+\mathrm{H}^{+} \\
\mathrm{Pb}^{++}+2 \mathrm{H}_{2} \mathrm{O} & \leftrightharpoons \mathrm{~Pb}(\mathrm{OH})_{2}+2 \mathrm{H}^{+}
\end{array}
$$

Calculation of overall stability constant:

The equation for overall stability constants or $\log \beta$ value ($\beta_{\text {prst }}$) of the $\mathrm{Pb}-2$-AHPPA -2,4-DHP (1:1:1) ternary species given as:

```
\(\mathrm{p}\left(\mathrm{Pb}^{++}\right)+\mathrm{r}(2-\mathrm{AHPPA})+\mathrm{s}(2,4-\mathrm{DHP})+\mathrm{t}(\mathrm{OH})\)
    \(\left(\mathrm{Pb}{ }_{\mathrm{p}}\left((2-\mathrm{AHPPA})_{\mathrm{r}}(2,4-\mathrm{DHP})_{\mathrm{s}}(\mathrm{OH})_{\mathrm{t}}\right.\right.\)
        \(\left[\left(\mathrm{Pb}^{++}\right)_{\mathrm{p}}(2-\mathrm{AHPPA})_{\mathrm{r}}(2,4-\mathrm{DHP})_{\mathrm{s}}(\mathrm{OH})_{\mathrm{t}}\right]\)
    \(\beta_{\text {prst }}=\)
    \(\left.\left[\mathrm{Pb}^{++}\right)\right]^{\mathrm{P}}[2-\mathrm{AHPPA}]^{\mathrm{r}}[2,4-\mathrm{DHP}]^{\mathrm{s}}[\mathrm{OH}]^{\mathrm{t}}\)
```

The overall stability constants or $\log \beta$ value ($\beta_{\text {prst }}$) of thePb-2-ASA -2,4-DHP (1:2:1) ternary species given as:

$$
\mathrm{p}\left(\mathrm{~Pb}^{++}\right)+\mathrm{r}(2-\mathrm{ASA})+\mathrm{s}(2,4-\mathrm{DHP})+\mathrm{t}(\mathrm{OH}) \quad\left(\mathrm{O}^{++}\right)_{\mathrm{p}}\left((2-\mathrm{ASA})_{\mathrm{r}}(2,4-\mathrm{DHP})_{\mathrm{s}}(\mathrm{OH})_{\mathrm{t}}\right.
$$

$$
\begin{gathered}
\left.\left[\mathrm{Pb}^{++}\right)_{\mathrm{p}}(2-\mathrm{ASA})_{\mathrm{r}}(2,4-\mathrm{DHP})_{\mathrm{s}}(\mathrm{OH})_{\mathrm{t}}\right] \\
\beta_{\text {prst }}= \\
\left.\left[\mathrm{Pb}^{++}\right)\right]^{\mathrm{p}}[2-\mathrm{ASA}]^{\mathrm{r}}[2,4-\mathrm{DHP}]^{\mathrm{s}}[\mathrm{OH}]^{\mathrm{t}}
\end{gathered}
$$

The overall stability constants or $\log \beta$ value ($\beta_{\text {prst }}$) of the $\mathrm{Hg}-\mathrm{Pb}-2$-ASA -2,4-DHP (1:1:1:1) quaternary species given as:
$\mathrm{p}\left(\mathrm{Hg}^{++}\right)+\mathrm{q}\left(\mathrm{Pb}^{++}\right)+\mathrm{r}(2-\mathrm{AHPPA})+\mathrm{s}(2,4-\mathrm{DHP})+\mathrm{t}(\mathrm{OH}) \quad \leftrightharpoons \quad\left(\mathrm{Hg}^{++}\right)_{\mathrm{p}}\left(\mathrm{Pb}^{++}\right) \mathrm{q} \quad(2-\mathrm{AHPPA})_{\mathrm{r}}(2,4-\mathrm{DHP})_{\mathrm{s}}$ (OH)

$$
\left[\left(\mathrm{Hg}^{++}\right)_{\mathrm{p}}\left(\mathrm{~Pb}^{++}\right) \mathrm{q}(2-\mathrm{AHPPA})_{\mathrm{r}}(2,4-\mathrm{DHP})_{\mathrm{s}}(\mathrm{OH})_{\mathrm{t}}\right]
$$

$$
\beta_{\mathrm{p} / \mathrm{qrst}}
$$

$$
\left.\left.\left[\mathrm{Hg}^{++}\right)\right]^{\mathrm{p}}\left[\mathrm{~Pb}^{++}\right)\right]^{\mathrm{q}}[2-\mathrm{AHPPA}]^{\mathrm{r}}[2,4-\mathrm{DHP}]^{\mathrm{s}}[\mathrm{OH}]^{\mathrm{t}}
$$

$\beta=$ Overall stability constant, $p=M_{1}, q=M_{2}$,
$r=$ primary ligand, $\mathrm{s}=$ secondary ligand and $\mathrm{t}=$ hydroxo species.

Overall stability constants and other related constants $\operatorname{Pb}($ II $)$ 2-AHPPA(A)-2,4-

DHP(B) (1:1:1) system.

- Proton-ligand formation constant $\left(\log \beta_{00 \mathrm{rot}} / \log \beta_{000 \mathrm{st}}\right)$ of 2 -AHPPA DHP at $37 \pm 1^{\circ} \mathrm{C} \quad \mathrm{I}=0.1 \mathrm{NaNO}_{3}$

Complex	$\boldsymbol{\operatorname { l o g }} \boldsymbol{\beta}_{\text {00rot }} \boldsymbol{\operatorname { l o g }} \boldsymbol{\beta}_{\text {000st }}$
$\mathrm{H}_{3} \mathrm{~A}$	21.35
$\mathrm{H}_{2} \mathrm{~A}$	19.18
HA	10.14
BH	9.49

- Hydrolytic constants $\left(\log \beta_{\mathrm{p} 000 \mathrm{t}} / \log \beta_{0 q 90 t}\right) \mathrm{M}^{2+}$ (aq.) ions.

Complex	Pb
$\mathrm{M}(\mathrm{OH})^{+}$	-9.84
$\mathrm{M}(\mathrm{OH})_{2}$	-15.54

- Metal-Ligand constants $\left(\log \beta_{p 0 r 00} / \log \beta_{0 q r 00} / \log \beta_{\text {pooso }} / \log \beta_{0 q 00_{0} 0}\right)$ Binary System

Complex	$\mathbf{P b}$
MA	4.14
MB	12.77

- Metal-Ligand constants $\left(\log \beta_{\mathrm{pors0}} / \log \beta_{0 \mathrm{qrss}}\right):$ Ternary $\operatorname{System}(1: 1: 1)$

Complex	$\mathbf{P b}$

MAB	18.48

Overall stability constants and other related constants for $\mathbf{P b}(\mathrm{II})-\mathbf{2 - A S A}(\mathbf{A})-\mathbf{2 , 4 -}$

DHP(B) (1:2:1)ternary system.

- Proton-ligand formation constant($\left.\log \beta_{0000} / \log \beta_{000 \mathrm{st}}\right)$ of 2-ASA -

2,4-
DHP at $37 \pm{ }^{10} \mathrm{C} \quad \mathrm{I}=0.1 \mathrm{NaN}_{\mathrm{O} 3}$

Complex	$\boldsymbol{\operatorname { l o g }} \boldsymbol{\beta}_{\text {00rot }} / \boldsymbol{\operatorname { l o g }} \boldsymbol{\beta}_{\text {000st }}$
$\mathrm{H}_{3} \mathrm{~A}$	15.26
$\mathrm{H}_{2} \mathrm{~A}$	13.33
HA	9.63
BH	9.49

- Hydrolytic constants $\left(\log \beta_{\mathrm{p} 000 /} / \log \beta_{0 q 00 t} \mathrm{M}^{2+}\right.$ (aq.) ions.

Complex	$\mathbf{P b}$
$\mathrm{M}(\mathrm{OH})^{+}$	-9.84
$\mathrm{M}(\mathrm{OH})_{2}$	-15.54

- Metal-Ligand constants $\left(\log \beta_{\mathrm{p} 0 \mathrm{roO}_{0}} / \log \beta_{0 \mathrm{qro0}} / \log \beta_{\mathrm{poO} 0 \mathrm{~s} 0} / \log \beta_{0 \mathrm{q} 0 \mathrm{so}}\right)$ Binary System

Complex	Pb
MA	11.61
MB	12.77

- Metal-Ligand constants $\left(\log \beta_{\mathrm{p} 0 \mathrm{rs} 0} / \log \beta_{\text {0qrs0 }} /\right):$ Ternary $\operatorname{System}(1: 2: 1)$

Complex	$\mathbf{P b}$
MAB	18.62

Overall stability constants and other related constants of binary, ternary

 andquaternarycomplexes forHg (II)- $\mathbf{P b}($ II $)$ 2-ASA(A)-2,4-DHP(B) system.- Proton-ligand formation constant $\left(\log \beta_{00 r 00} / \log \beta_{000 s t}\right)$ of 2-ASA- 2,4 -DHP at $37 \pm$ $1^{0} \mathrm{C} \mathrm{I}=0.1 \mathrm{NaNO}_{3}$

Complex	$\boldsymbol{\operatorname { l o g }} \boldsymbol{\beta}_{\text {00rot }} / \boldsymbol{\operatorname { l o g }} \boldsymbol{\beta}_{\text {000st }}$
$\mathrm{H}_{3} \mathrm{~A}$	15.26
$\mathrm{H}_{2} \mathrm{~A}$	13.33
HA	9.63
BH	9.49

- Hydrolytic constants of M^{2+} (aq.) ions. $\left(\log \beta_{\mathrm{p} 000 \mathrm{t}} / \log \beta_{0 q 00 t}\right)$

Complex	$\mathbf{H g}$	$\mathbf{P b}$
$\mathrm{M}(\mathrm{OH})^{+}$	-3.84	-9.84
$\mathrm{M}(\mathrm{OH})_{2}$	-6.38	-15.54

- Metal-Ligand constants $\left(\log \beta_{\mathbf{p o r o 0}} / \log \beta_{\mathbf{q q q r O O}_{0}} / \log \beta_{\text {pooso }} / \log \beta_{0 q \operatorname{qus}}\right)$ Binary System

Complex	$\mathbf{H g}$	$\mathbf{P b}$
MA	13.09	11.61
MB	13.08	12.77

- Metal-Ligand constants $\left(\log \beta_{\mathrm{p} 0 \text { rs0 }} / \log \beta_{0 \mathrm{qrs} 0}\right):$ TernarySystem(1:1:1)

Complex	$\mathbf{H g}$	$\mathbf{P b}$

MAB	21.00	18.08

- Metal-Ligand constants(Log $\beta_{\mathrm{pqrst})}$: Quaternary(1:1:1:1) System

Complex	Hg-Pb
$\mathrm{M}_{1}-\mathrm{M}_{2}-\mathrm{A}-\mathrm{B}$	29.45

Proposed Ternary Structure;-

Proposed quaternarystructures:

$\mathbf{H g}(\mathrm{II})-\mathrm{Pb}$ (II)-2-ASA-2,4-DHP

Conclusion:

From the above discussion it is very clear that the overall stability constant of complexes depend upon all the step wise process which involved in complex formation. The order of overall stability constant of various investigated species follows a trend quaternary species, ternary of 1:2:1, ternary of 1:1:1 and then binary of Hg and Pb with primary as well as secondary ligands which is due to increased number of fused ring and the extra stabilization caused by ligand -ligand interactions.

References:

1. S.Hao et al., Pharmacol.Biochem.Behav.68,273-281(2001)
2. Magil et al. Nutritional Neuroscience 6 :237-246,(2003)
3. A ntimo D 'Aniello.Aspartic acid: An endogenous amino acid with animportant neuroendocrine role. Brain Research Reviews 53:215-214(2008)
4. R. Abegg, Z. anorg. Chem. 32, 330 (1904).
5. R. Abegg and G.Bodlander, Z. anorg. Chem. 20, 543 (1899).
6. Welcher F.J. (1957) "The analytical uses of ethylenediaminetetraacetic acid" D.VanNostarand Company, New York P. 169
7. Bjerrum, (1941) "Metal Amine Formation in Aqueous Solution". P. Masse \&. Sons Copenhagen.
8. lrving H. M. and. Rossetti, H.S. (1953) J. Chem. Soc... 3397
9. lrving, H. M. and Rossetti, H.S. (1954) J. Chem. Soc... 2904
10. Sayce, I.G. (1968) Talanta, 15, 1397-1411.
11. Sayce, I.G. (1970) Talanta, 18, 653.
12. Sayce, I.G. and Sharma, V. (1972) Talanta, 19, 831.
13. Arya Prachi et al (2010) J. Chem. Pharm. Res.,2(6):253-257
14. T. R. Barman and G. N. Mukherjee J. Indian Chem. Soc., Vol. 87, 1291-1297, (2010).
15. R. N. Patel, V. L. N. Gundla\& D. K. Patel; Indian J. chem., 47A. 353 (2008).
16. ShaetaQuyoom and Badr-Ud-Din Khan E- Journal of chemistry 6 (S1), S117-S122, (2009).
17. K. B. Vyas, G.R. Jani\& M.V. Hathi, E- Journal of Chemistry, 6(4), 1121-1124 (2009)
18. D. Bartaria, V. P. Shukla and V. Krishna; J. Indian Chem. Soc., 86, 9 (2010).
