

International Journal of Research in IT and Management (IJRIM)
Available online at: http://euroasiapub.org

Vol. 13 Issue 11, November- 2023

ISSN(o): 2231-4334 | ISSN(p): 2349-6517 | Impact Factor: 8.106

International Journal of Research in IT and Management (IJRIM)
 Email:- editorijrim@gmail.com, http://www.euroasiapub.org

 (An open access scholarly, peer-reviewed, interdisciplinary, monthly, and fully refereed journal.)

92

Design and Evaluation of Reliability Prediction model to predict the reliability of

interlocking software using computational intelligence.

Nidhi, Research Scholar,

Mewar University, Chittorgarh, Rajasthan

Pradeep Tomar, Research Supervisor,

Professor Dept of ICT, Gautam Buddha University, UP

DOI:euro.ijrim.77390.20980

Abstract: Ensuring the reliability of interlocking software is of paramount importance in

safety-critical systems such as railway signaling. The complexity and criticality of

interlocking software demand a robust approach for predicting its reliability during the

development phase. This research paper presents a comprehensive software reliability

prediction model tailored specifically for interlocking software systems. This model

leverages historical data, fault analysis, and incorporates various software metrics to

accurately estimate the reliability of interlocking software, thereby aiding developers in

identifying potential issues and improving overall system dependability.

INTRODUCTION

Software reliability is defined as the probability of failure-free software operation for a

specified period in a specified environment (ANSI definition). The Software failures are

introduced by the system analysts, designers, programmers and managers during different

phases of software development life cycle. To detect and remove these errors, the system

software is tested. The quality of the software system in terms of reliability is measured by the

removal of these errors. Software reliability prediction is based on parameters associated with

the software product and its development environment. The study of software reliability can

be categorized into three parts: modeling, measurement and improvement. Software reliability

modeling has matured to the point that meaningful results can be obtained by applying

suitable models to the problem. There are many models that exists, but no single model can

capture a necessary amount of the software characteristics. Assumptions must be made to

simplify the problem. Many software reliability models have been developed over the years,

and most of these models are based on failure data collected in the process of software system

testing or operation. These models can estimate the current software reliability and predict the

time needed to achieve a reliability objective. However, failure data collected during the late

testing phase may be too late for fundamental design changes, they can‟t give contribution to

the enhancement of software product reliability. Software reliability prediction should be

carried out throughout software development life cycle in order to improve software

reliability effectively. Early software reliability prediction can provide guidance for developer

to adopt proper technique and resources, so as to assure high reliability of software system.

Examples of Software reliability prediction models, Rome laboratory developed a early

prediction model which is based on software application type and development

International Journal of Research in IT and Management (IJRIM)
Available online at: http://euroasiapub.org

Vol. 13 Issue 11, November- 2023

ISSN(o): 2231-4334 | ISSN(p): 2349-6517 | Impact Factor: 8.106

International Journal of Research in IT and Management (IJRIM)
 Email:- editorijrim@gmail.com, http://www.euroasiapub.org

 (An open access scholarly, peer-reviewed, interdisciplinary, monthly, and fully refereed journal.)

93

characteristics; Samuel Keene created a Development Process Prediction Model (DPPM) for

early software reliability prediction, which is based on software development Capability

Maturity Model (CMM);

Rayleigh model is used to predict software reliability in the software development process;

Software engineer metrics, such as McCabe's cyclomatic complexity metric, were also used to

predict software reliability. However, these early prediction models just can be applied to a

specific software development stage, and have limited prediction capacity. Software

reliability growth models, refer to those models that try to predict software reliability from

test data. These models try to show a relationship between fault detection data (i.e. test data)

and known mathematical functions such as logarithmic or exponential functions. The

goodness of fit of these models depends on the degree of correlation between the test data and

the mathematical function. Typically two broad categories of software reliability growth

models (SRGMs) include parametric models and nonparametric models. Most of the

parametric models are based on Non Homogeneous Poisson Process (NHPP) that has been

widely used successfully in practical software reliability engineering. Artificial Neural

Network (ANN) with software reliability models has aroused more research interest.

THE ROLE OF RELIABILITY PREDICTION

Reliability Prediction has many roles in the reliability engineering process. The impact of

proposed design changes on reliability is determined by comparing the reliability predictions

of the existing and proposed designs. The ability of the design to maintain an acceptable

reliability level under environmental extremes can be assessed through reliability predictions.

Predictions can be used to evaluate the need for environmental control systems. In today's

competitive electronic products market, having higher reliability than competitors is one of

the key factors for success. To obtain high product reliability, consideration of reliability

issues should be integrated from the very beginning of the design phase. This leads to the

concept of reliability prediction. Historically, this term has been used to denote the process of

applying mathematical models and component data for the purpose of estimating the field

reliability of a system before failure data are available for the system. However, the objective

of reliability prediction is not limited to predicting whether reliability goals, such as MTBF,

can be reached. It can also be used for:

 Identifying potential design weaknesses

 Evaluating the feasibility of a design

 Comparing different designs and life-cycle costs

 Providing models for system reliability/availability analysis

 Establishing goals for reliability tests

 Aiding in business decisions such as budget allocation and scheduling

According to the type of available software reliability information, certain software reliability

models will be recommended. In the three-step software reliability prediction process,

International Journal of Research in IT and Management (IJRIM)
Available online at: http://euroasiapub.org

Vol. 13 Issue 11, November- 2023

ISSN(o): 2231-4334 | ISSN(p): 2349-6517 | Impact Factor: 8.106

International Journal of Research in IT and Management (IJRIM)
 Email:- editorijrim@gmail.com, http://www.euroasiapub.org

 (An open access scholarly, peer-reviewed, interdisciplinary, monthly, and fully refereed journal.)

94

Keene's Development Process Prediction Model (DPPM), Rayleigh model, and models in the

Computer Aided Software Reliability Estimation (CASRE) tool suite are used to

progressively refine the prediction, which is continuously updated based on the most current

reliability Software reliability is the probability of the software components of producing incorrect

output. Software should not wear out and continue to operate after a bad result. No single model is

either complete or fully developed which can be used in every situation. Software reliability is divided

into following two categories based on assumptions, factors and mathematical function.
● Prediction Model: This model uses historical data to analyze previous data and some

observations. It includes prior development and regular test phases. The model follows

the concept phase and the predication from the future time.

● Estimation Model: Estimation model uses the current data from the current software

development effort and doesn't use the conceptual development phases and can

estimate at any time.

First the software development process quality is assessed rough reliability model. Software

Engineering Institutes (SEI) Capability Maturity Model (CMM) is used, along with other

development and deployment metrics, as a predictor of the latent fault density. This can be

successfully done prior to the code development phase. Secondly, once the development

phase is underway and code review and inspection data are collected, the Rayleigh model and

the Software Error Estimation Program (SWEEP) tool is used as a predictor of the latent fault

density of delivered code. Finally, once the code is running and reaches operational testing,

the Computer Aided Software Reliability Estimation (CASRE) suite of empirical software

reliability models is used to collect failure statistics and plot failure distributions. The failure

distributions and statistical failure data are derived from software trouble reports. Some

typical software trouble reports will be reviewed, categorizing the failure criticality, and

completing an example. Furthermore, integrating software reliability into the overall system

model is discussed. The integration of the Software Development Process, with methods to

collect Operational Availability and Interruption of Service (IOS) metrics will be discussed.

Related work

According to Cheung [1] integrates failure states of individual components into State-Based

Models. The paper describes a Hidden Markov Model (HMM) as DTMC, which delivers

transition probabilities to failure states. The reliability of service, therefore, depends both on

the reliability of the components and the probabilistic distribution of the utilization of the

components to provide the service. The application of this model was to determine the

expected penalty cost of failures, but the probability of control flow propagation was not

included.

P. Kubat [2] proposed a model which includes the information about component execution

time, this result in an SMP as a model of software architecture. In this model it is assumed

International Journal of Research in IT and Management (IJRIM)
Available online at: http://euroasiapub.org

Vol. 13 Issue 11, November- 2023

ISSN(o): 2231-4334 | ISSN(p): 2349-6517 | Impact Factor: 8.106

International Journal of Research in IT and Management (IJRIM)
 Email:- editorijrim@gmail.com, http://www.euroasiapub.org

 (An open access scholarly, peer-reviewed, interdisciplinary, monthly, and fully refereed journal.)

95

that the transition among the component follows DTMC such that:

Qi(r) = probability that task r will first call component i

Pij (r)= probability that task r will call component j after the execution of component i

Failure intensity for a component „i’ is given by αi. The solution of this method is taken as a

hierarchical. This is a good model for reliability estimation. This model considers the case for

software composed of M components designed for K different tasks. According to S. Gokhale

[3], they demonstrate the flexibility offered by discrete-event simulation to analyze such

complex systems through two case studies, one of a terminating application, and the other of a

real-time application with feedback control. They simulate the failure behaviour of the

terminating application with instantaneous as well as explicit repair. They also study the

effect of having fault-tolerant configurations for some of the components on the failure

behavior of the application. In the second case of the real-time application, they initially

simulate the failure behavior of a single version taking into account its reliability growth.

Later they study the failure behavior of three fault tolerant systems, viz., Distributed Recovery

Block (DRB), N-Version Programming (NVP) and N-Self Checking Programming (NSCP),

which are built from the individual versions of the real-time application Testing is used to

determine application architecture.

A coverage analysis tool ATAC is used to determine the branching probabilities between the

components. Component failure behavior is given by a NHPP. The solution of this method is

taken as Symbolic Hierarchical Automated Reliability and Performance Evaluator (SHARPE)

that solves stochastic models for reliability, performance, and performs ability were selected.

This approach describes an analytical model to reliability estimation. W. Everett [4], describes

an approach to analyzing software reliability using component analysis. The analysis can

begin prior to testing the software and can help in selecting testing strategies. It uses the

Extended Execution Time (EET) reliability growth model at the software component level.

This work describes how to estimate model parameters from characteristics of the software

components and characteristics of how test cases and operational usage stress the software

components. The work walks through an example illustrating the effects on reliability growth

of (1) selecting test cases based on an operational profile versus selecting them based on

uniform coverage of test cases, and (2) incremental delivery of software components to

system test. The analysis can be done using commercial data analysis programs. Technique

used by this model is NHPP. This is an earliest and good model for analyzing CBS reliability.

In this approach it is required to keep track of cumulative amount of processing time that is

spent in each component. According to H. Singh et al. [5], proposed a novel approach to

reliability analysis of component-based systems. In this approach, Unified Modelling

Language (UML) technique is incorporated into reliability prediction and assessment. The

development of a probabilistic technique for reliability analysis applicable at the design-level,

before system development and integration phases i.e. as soon as the properly annotated use

case diagrams and sequence diagram become available. This approach is scalable because all

International Journal of Research in IT and Management (IJRIM)
Available online at: http://euroasiapub.org

Vol. 13 Issue 11, November- 2023

ISSN(o): 2231-4334 | ISSN(p): 2349-6517 | Impact Factor: 8.106

International Journal of Research in IT and Management (IJRIM)
 Email:- editorijrim@gmail.com, http://www.euroasiapub.org

 (An open access scholarly, peer-reviewed, interdisciplinary, monthly, and fully refereed journal.)

96

the calculations are done by an automated tool. According to Sherif Yacoub et al. [6],

introduces a probabilistic model and a Reliability Analysis Technique that is applicable to

high-level designs. The technique is named Scenario-Based Reliability Analysis (SBRA).

SBRA is specific to component-based software whose analysis is strictly based on execution

scenarios. Using scenarios, they construct a probabilistic model named a Component-

Dependency Graph (CDG). CDGs are directed graphs that represent components, component

reliabilities, link and interface reliabilities, transitions and transition probabilities. In CDGs,

component interfaces and link reliabilities are treated as first-class elements of the model.

Based on CDGs, an algorithm is presented to analyze the reliability of the application as the

function of reliabilities of its components and interfaces. The proposed approach is used to

analyze the impact of variations and uncertainties in the reliability of individual components,

subsystems, and links between components on the overall reliability estimate of the software

system.

Wang Dong [7], in this approach various complex components relationships are analyzed

using a path based model. These relationships have great impact on systems reliability .On the

basis of these results a new tool has been developed to calculate the software application

reliability. It assumes that all components reliabilities and transition probabilities are given.

Fan Zhang et.al. [8], describes a sub domain-based reliability model to characterize the

component into path-based architectural reliability model, and provides the enhanced

composition algorithms to solve the model. The model is based upon the CDG. In this

approach a systems operational profile is given. It is assumed that control flow transits from

component i to component j, component j reliability is calculated as Tij * (Rij × Wij).

Tij = the transition probability from component i to component j

Rj = reliability vector on each sub domain of component j

Wij = the weighted vector for each sub domain of component j in transition from component i

to j.

They assume that the model can fully capture the effect of different operational profiles on the

overall reliability of system from aspects of both transition probability and component

reliability.

Yuanjie Si [9] has given the approach in which five basic component composition

mechanisms and their reliability estimation techniques are proposed. After calculating the

reliability for each composition, a procedure is given to estimate the overall application

reliability. The proposed approach estimates the reliability based on component composition

mechanism and component utilization frequency.

According to Chao-Jung Hsu et al. [10], present an adaptive approach for testing path into

reliability estimation for complex component-based systems. For path reliability estimation

three methods have been proposed namely sequence, branch and loop structures. The

International Journal of Research in IT and Management (IJRIM)
Available online at: http://euroasiapub.org

Vol. 13 Issue 11, November- 2023

ISSN(o): 2231-4334 | ISSN(p): 2349-6517 | Impact Factor: 8.106

International Journal of Research in IT and Management (IJRIM)
 Email:- editorijrim@gmail.com, http://www.euroasiapub.org

 (An open access scholarly, peer-reviewed, interdisciplinary, monthly, and fully refereed journal.)

97

proposed path reliability can be used for reliability estimation of overall application.

Algorithmic approach is used. A promising estimation of software reliability can be given by

this approach when testing information is available..

According to Singh and Tomar [11], this work proposed a Reliability Estimation Model for

CBS to estimate the reliability based on reliability of individual components, path propagation

probability and component impact factor. The path propagation probability depends on the

decisions taken at component level which then decide the due course of that path. This model

also estimates the impact factor of individual components on overall reliability. The impact

factor can be used to focus the efforts to obtain the best reliability improvements. The impact

of a component depends on its usage during the execution of the system.

PROBLEM IDENTIFICATION

Reliability is the key factor for interlocking or any other software to perform fault free and

user satisfactory operations in real time process. According to the literature survey some

problems are identifed : Interlocking software are real time and critical safety prone software

for the travelling safety. So it is necessary that control signal of the software should give the

fault free and reliable signal, fault should be easily detectable according to the present

scenario or condition. observing some literature, it is fact that there is a scope of improvement

in the following areas: Sometimes in real time scenario fault could not be detected exactly so

it is difficult to decide which techniques or methods should be applicable when the number of

data or cases are dynamic. This problem lead to testing coverage problem.

Reliability Prediction Model

Naive Bayes [Good, 1965; Langley et al., 1992] is a simple probabilistic classifier based on

Bayes‟ rule. The naive Bayes algorithm builds a probabilistic model by learning the

restricted prospects of each input attribute given a possible worth taken by the output

attribute. This model is then used to predict an output value when we are given a set of

inputs. This is done by applying Bayes‟ rule on the restricted probability of seeing a possible

output value when the quality values in the given instance are seen together. Before recitation

the algorithm we first define the Bayes‟ rule.
Bayes’ rule states that;

P (A B) = P (B|A)P (A)

 P (B)

Where P (A|B) is distinct as the prospect of observing A given that B occurs. P (A|B) is

called subsequent probability, and P (B|A), P(A) and P(B) are called prior probabilities.

Bayes‟ theorem contributes a connection between the subsequent probability and the prior

possibility. It allows one to find the probability of observing A given B when the individual

probabilities of A and B are known, and the probability of observing B given A is also

International Journal of Research in IT and Management (IJRIM)
Available online at: http://euroasiapub.org

Vol. 13 Issue 11, November- 2023

ISSN(o): 2231-4334 | ISSN(p): 2349-6517 | Impact Factor: 8.106

International Journal of Research in IT and Management (IJRIM)
 Email:- editorijrim@gmail.com, http://www.euroasiapub.org

 (An open access scholarly, peer-reviewed, interdisciplinary, monthly, and fully refereed journal.)

98

known. The naive Bayes algorithm uses a set of preparation examples to categorize a new

occurrence given to it using the Bayesian approach. For instance, the Bayes rule is realistic to

find the probability of observing each production class given the input attributes and the class

that has the maximum probability is allocated to the instance. The possibility values used are

attained from the counts of attribute values seen in the training set. In endure example, for a

given example with two input attributes temp Atand temp Bt, with values a and b

individually, the value vM AP allocated by the naive Bayes algorithm to the the output

attribute temp Ct is the one that has the highest possibility across all possible values taken by

output attribute; this is known as the maximum-a-posterior (MAP) rule. The prospect of the

output attribute taking a value vj when the given input quality values are seen together is

given by

P (vj|a, b)

This possibility value as such is challenging to calculate. By applying Bayes theorem on

this equation is
P (a, b|vj)P (vj)

= P (a, b|v)P P (v |a, b) =

(v)

Where P (vj) is the probability of detecting vj as the output value, P (a, b|vj) is the

probability of detecting input attribute values a, b together when output value is vj. But if

the number of input attributes (a, b, c, d, ) is large then it will not have sufficient data to

estimate the probabilityP (a, b, c, d,|vj). The naive Bayes algorithm resolves this

problem by using the statement of conditional individuality for the all the input qualities

given the value for the output. This means it assumes that the values taken by an attribute

are not reliant on the values of other attributes in the occurrence for any given output. By

relating the conditional individuality assumption, the probability of detecting an output

value for the inputs can be attained by multiplying the probabilities of separate inputs

given the output value. The likelihood value P (a, b|vj) can then be simplified as

P (a, b|vj) = P (a|vj)P (b|vj)

Where P (a|vj) is the possibility of observing the value a for the attribute temp At when

output value is vj. Thus the possibility of an output value vj to be allocated for the

specified input attributes Learning in the Naive Bayes algorithm includes finding the

possibilities of P (vj) and P (ai|vj) for all possible standards taken by the input and output

qualities based on the preparation set providing. P (vj) is attained from the ratio of the

number of time the value vj is seen for the output attribute to the total number of occurrences

in the training set. For an quality at position i with value ai, the probability P (ai|vj) is

attained from the number of times ai is seen in the training set when the output value is vj.

The naive Bayes algorithm needs all attributes in the example to be discrete.

International Journal of Research in IT and Management (IJRIM)
Available online at: http://euroasiapub.org

Vol. 13 Issue 11, November- 2023

ISSN(o): 2231-4334 | ISSN(p): 2349-6517 | Impact Factor: 8.106

International Journal of Research in IT and Management (IJRIM)
 Email:- editorijrim@gmail.com, http://www.euroasiapub.org

 (An open access scholarly, peer-reviewed, interdisciplinary, monthly, and fully refereed journal.)

99

Preliminaries

Let Ti, i = 1, 2, 3, ..., n denote the age of the software as software faults are found and Yi, i =

1, 2, 3, ..., n denote the life length of the software at the i
t
h stage of testing following a

modification attempting to remove an error, [22] Several models have been proposed for

modelling the MTBF and estimating software failure times when they can be characterized

by the Power Law Process.

Bayes, Empirical-Bayes Model

Mazucchi and Soyer developed a Bayes Empirical-Bayes model using similar assumption

as the Littlewood-Verrall model, [21, 22]

Π(α|H) = µ 0 < α < µ (3)

International Journal of Research in IT and Management (IJRIM)
Available online at: http://euroasiapub.org

Vol. 13 Issue 11, November- 2023

ISSN(o): 2231-4334 | ISSN(p): 2349-6517 | Impact Factor: 8.106

International Journal of Research in IT and Management (IJRIM)
 Email:- editorijrim@gmail.com, http://www.euroasiapub.org

 (An open access scholarly, peer-reviewed, interdisciplinary, monthly, and fully refereed journal.)

100

ba

Π(β|H) = Γ(a)βa−1e−bβ (4)

where µ > 0, a > 0, andb > 0 are known quantities.

1. Given background, the information H, αandβ are statistically independent.

2. Given α, βand(λ1, λ2, ..., λn), the Yi
j
s are statistically independent

with each Yi sta- tistically independent of α,β and all λ‟s other than

λi .

Computation of the posterior failures rates leads to integrals which cannot be expressed in

closed form, Lindley‟s approximation, [22] is used to approximate the integrals. Mazucchi

and Soyer‟s model was reported to be an improvement over the littlewood/Verrall model,

after applying this model to some actual software failure data first reported in [22].

System Testing

Software testing is an important element of Software quality assurance and represents the

ultimate review of specification, design and coding. The increasing visibility of S/W as a

system element and the costs associated with Software failure are motivating forces for well

planned, through testing. Though the test phase is often thought of as separate and distinct

from the development effort–first develop, and then test–testing is a concurrent process that

provides valuable information for the development team.There are at least three options for

integrating Thesis Builder into the test phase:

• Testers do not install Thesis Builder, use Thesis Builder functionality to compile

and source-control the modules to be tested and hand them off to the testers,

whose process remains unchanged.

• The testers import the same Thesis that the developers use.

• Create a Thesis based on the development Thesis but customized for the testers

(for example, it does not include support documents, specs, or source), who

import it.

Unit Testing

This is the first level of testing. In this different modules are tested against the speci-

fications produced during the design of the module. During this testing the number of

arguments is compared to input parameters, matching of parameter and arguments etc. It is

also ensured whether the file attributes are correct, whether the Files are opened before

using, whether Input/output errors are handled etc. Unit Test is conducted using a Test

Driver usually.

International Journal of Research in IT and Management (IJRIM)
Available online at: http://euroasiapub.org

Vol. 13 Issue 11, November- 2023

ISSN(o): 2231-4334 | ISSN(p): 2349-6517 | Impact Factor: 8.106

International Journal of Research in IT and Management (IJRIM)
 Email:- editorijrim@gmail.com, http://www.euroasiapub.org

 (An open access scholarly, peer-reviewed, interdisciplinary, monthly, and fully refereed journal.)

101

Output Testing

After performing the validation testing, next step is output testing of the proposed system

since no system could be useful if it does not produces the required output generated or

considered in to two ways. One is on screen and another is printed format. The output

comes as the specified requirements by the user. Hence output testing does not result in any

correction in the system.

Integration Testing

Integration testing is a systematic testing for constructing the program structure, while at

the same time conducting test to uncover errors associated within the interface. Bottom- up

integration is used for this phase. It begins construction and testing with atomic modules.

This strategy is implemented with the following steps.

• Low-level modules are combined to form clusters that perform a specific software

sub function.

• The cluster is tested.

• Drivers are removed and clusters are combined moving upward in the program

structure.

Test Cases

This provides the final assurance that the software meets all functional, behavioral and

performance requirements. The software is completely assembled as a package. Validation

succeeds when the software functions in which the user expects. After performing the

validation testing, next step is output testing of the proposed system since no system could

be useful if it does not produces the required output generated or considered in to two ways.

One is on screen and another is printed format. The output comes as the specified

requirements by the user. Hence output testing does not result in any correction in the

system.

RESULTS AND IMPLEMENTATION

Software Implementation or Simulation (Tool) Pro- gramming Area For

Experimental Results

Basically MATLAB is cast-off as an experimental and simulation software for the config-

uration of system established up and for location up the data transmission among various

nodes existing in the set-up. MATLAB is an essential software design and commands are

used as a replication device.

Then subsequent segment labels an outline approximately this supple and controlling de-

vice second-hand in numerous uses of engineering, science and arithmetic. A Program of

International Journal of Research in IT and Management (IJRIM)
Available online at: http://euroasiapub.org

Vol. 13 Issue 11, November- 2023

ISSN(o): 2231-4334 | ISSN(p): 2349-6517 | Impact Factor: 8.106

International Journal of Research in IT and Management (IJRIM)
 Email:- editorijrim@gmail.com, http://www.euroasiapub.org

 (An open access scholarly, peer-reviewed, interdisciplinary, monthly, and fully refereed journal.)

102

software corresponding MATLAB permits for operates and thinks about data, achieve

controls and software design. It can achieve both refined and modest responsibilities.

Simulation Result

Software reliability is defined as the probability of failure free operation of software in a

specified environment during a specified period. Software reliability has been the focus of

several researches over the last four decades. One of the earliest software reliability models

is the exponential Non homogeneous Poisson process developed by Goel and O kumoto in

1979. Most research works have considered fitting different software reliability models to

different software reliability data where the estimates of the parameters of the models are

Figure 1.1: A slvnvdemo power window controller with validated passenger

obtained by Na¨ıve bayes prediction method. However, the problem of predictive analysis

on the Goel – Okumoto software reliability model has not so far been explored despite the

fact that predictive analysis is very useful for modifying, debugging and determining when

to terminate software development testing process. This would lead to improved software

reliability and efficient use of resources during software development testing. To assess and

improve software reliability, software developers have to perform operational profile

testing where they emulate the end-user environment during software testing. Operation

profile testing is difficult and time consuming especially when there are multiple types of

end-users and hence there is the need for software predictive analysis. The main objective

of this study was to perform Bayesian predictive analyses on the Goel – Okumoto software

reliability model. Informative and non-informative priors for one-sample case and non-

informative prior for two-sample case has been used in the study.

 The model starts by logging input signals to the component implementing the controller in

its parent model and creating harness model for the controller from that logged data. A new

test case in the harness model it captures all test cases and simulates the controller model for

model coverage. Finally, it execute the controller with those test cases in sim- ulation mode

and Software-In-the-Loop (SIL) mode. The slvnvdemopowerwindow model contains a

power window controller and a low-order plant model. To create a harness model for the

International Journal of Research in IT and Management (IJRIM)
Available online at: http://euroasiapub.org

Vol. 13 Issue 11, November- 2023

ISSN(o): 2231-4334 | ISSN(p): 2349-6517 | Impact Factor: 8.106

International Journal of Research in IT and Management (IJRIM)
 Email:- editorijrim@gmail.com, http://www.euroasiapub.org

 (An open access scholarly, peer-reviewed, interdisciplinary, monthly, and fully refereed journal.)

103

controller with the signals that simulate controller in the plant model, first log the input

signals and then invoke harness genera- tion with that logged data. It can modify the test data

in a harness model by manually editing the data values us- ing the Signal Builder user

interface. It cans also new test cases by creating new signal

Figure 1.2: A slvnvdemo power window controllerhybrid system model with passenger Up

and down

Figure 1.3: Test case explanation and unit testing of passenger for test case 1

International Journal of Research in IT and Management (IJRIM)
Available online at: http://euroasiapub.org

Vol. 13 Issue 11, November- 2023

ISSN(o): 2231-4334 | ISSN(p): 2349-6517 | Impact Factor: 8.106

International Journal of Research in IT and Management (IJRIM)
 Email:- editorijrim@gmail.com, http://www.euroasiapub.org

 (An open access scholarly, peer-reviewed, interdisciplinary, monthly, and fully refereed journal.)

104

Figure 1.4: Signal presentation of end stop, obstacle, driver 1, 2 and passenger 1, 2

Figure 1.5: Test case explanation and unit testing of passenger for test case 2

Figure 1.6: Signal presentation of end stop, obstacle, driver 1, 2 and passenger 1, 2

Figure 1.7: Real and fitted data

groups in the block. Alternatively, we can use the signal builder command to accomplish

the same thing programmatically.

In order to programmatically execute the model slvnv demo power window controller with

the test cases designed in the harness model, it first need to use the slvnvlogsignals function

to capture the input values of all test cases in the necessary data format.

International Journal of Research in IT and Management (IJRIM)
Available online at: http://euroasiapub.org

Vol. 13 Issue 11, November- 2023

ISSN(o): 2231-4334 | ISSN(p): 2349-6517 | Impact Factor: 8.106

International Journal of Research in IT and Management (IJRIM)
 Email:- editorijrim@gmail.com, http://www.euroasiapub.org

 (An open access scholarly, peer-reviewed, interdisciplinary, monthly, and fully refereed journal.)

105

Use the slvnvruntest function to simulate the controller with all of the test cases designed in

the harness and measure model coverage.Use the slvnvruncgvtest function to execute the

model slvnvdemo power window controller in simulation mode, with test cases cap- tured

from the harness model.

Figure 1.7 shows the fitted data and real fault. During the fitted data it also get some fault

as shown in figure 1.7. Measures the percentage of the total variation about the mean

accounted for by the fitted curve. It ranges in value from 0 to 1. Small values indicate that

the model does not fit the data well. The larger, the better the model explains the variation

in the data. The error approximation figure 1.10 incorporating the effect of time and

covariates simultaneously and Sometimes, the effect of covariates are insignificant and the

reduced form of the model may prove to be a better fit for the data and this can easily be

obtained by setting f = 0, which gives us the better model. Similarly, when both covariate

effect and time trend are insignificant, the model reduces to a NHPP model, with a constant

recurrence rate, a. The number of intervals is always less or equal to number of failures that

we observed because there can be more than one failure in any time interval.

Figure 1.8: Approximate dx (t) and Exact dx (t)

Figure 1.9: Approximate dx (t) and exact dx (t) on time

Figure 1.10: Error of approximation of software prediction

International Journal of Research in IT and Management (IJRIM)
Available online at: http://euroasiapub.org

Vol. 13 Issue 11, November- 2023

ISSN(o): 2231-4334 | ISSN(p): 2349-6517 | Impact Factor: 8.106

International Journal of Research in IT and Management (IJRIM)
 Email:- editorijrim@gmail.com, http://www.euroasiapub.org

 (An open access scholarly, peer-reviewed, interdisciplinary, monthly, and fully refereed journal.)

106

Conclusion

A new reliability model addressing the testing coverage is presented. Testing coverage is a

very important measure for both software developers and users. Comparisons of this model

with other existing NHPP models have also been presented. Two sets of software testing

data have been used to examine the goodness-of-fit of all models. Two criteria have been

used to compare the models and the results show that the new model fits significantly

better. A software cost model has also been developed incorporating the testing cost, fault

removal cost, and risk cost due to potential problems remaining in the uncovered code.

Optimal software release policies are also obtained and it can be used to determine when to

stop testing the software so as to minimize the expected total cost and satisfy the software

reliability requirements. In this work the usage of Na¨ıve bayes in the problem of modeling

the software reliability in the case of the dependence components performance is analysed.

Further research will be addressed to the practical confirmation of results and the practical

application of the pattern and compared it with existing alternative approaches.

REFERENCES

[1] R. Cheung, (1980), “A User-Oriented Software Reliability Model”, in IEEE

Transactions on Software Engineering, 6(2), pp. 118-125.

[2] P. Kubat (1989), “Assessing Reliability of Modular Software”. Operations Research

Letters, (8), pp. 35-41.

[3] S. Gokhale and K. Trivedi (1998), “Dependency Characterization in Path-Based

Approaches to Architecture-Based Software Reliability Prediction,” in proceeding of

IEEE Workshop on application Specific Software Engineering and Technology

(ASSET’98), Richardson, Texas, Mar. 26–28, pp. 86–89.

[4] W. Everett, (1999), “Software Component Reliability Analysis”, in proceeding of

Symposium Application Specific systems and Software Engineering Technology

(ASSET’99), pp 204-211.

[5] H. Singh, V. Cortellessa, B. Cukic, E. Gunel and V. Bharadwaj (2001), “A Bayesian

Approach to Reliability Prediction and Assessment of Component-Based Systems”, in

proceeding of 12
th

 IEEE International Symposium on Software Reliability

Engineering, Hong Kong, pp. 12-21.

[6] 18. S. Yacoub, B. Cukic, and H. Ammar. (2004), “A Scenario-Based Reliability

Analysis Approach for Component-Based Software”, in IEEE Transactions on

Reliability, Vol. 28, No. 6, pp. 529-54.

[7] Wang Dong , Ning Huang, Ye Ming (2008), “Reliability Analysis of Component–

Based Software Based on Relationships of Components”, in proceeding of IEEE

Conference on Web Services, pp 814-815.

International Journal of Research in IT and Management (IJRIM)
Available online at: http://euroasiapub.org

Vol. 13 Issue 11, November- 2023

ISSN(o): 2231-4334 | ISSN(p): 2349-6517 | Impact Factor: 8.106

International Journal of Research in IT and Management (IJRIM)
 Email:- editorijrim@gmail.com, http://www.euroasiapub.org

 (An open access scholarly, peer-reviewed, interdisciplinary, monthly, and fully refereed journal.)

107

[8] Fan Zhang, Xingshe Zhou, Junwen Chen, Yunwei Dong (2008), “A Novel Model for

Component-Based Software Reliability Analysis” in proceeding of 11
th

 IEEE High

Assurance Systems Engineering Symposium, pp 303-309.

[9] Yuanjie Si, Xiaohu Yang, Xinyu Wang,Chao Huang,Aleksander J. Kavs, (2011), “An

Architecture-Based Reliability Estimation framework Through Component

Composition Mechanisms”, in proceeding of International Conference on Computer

Engineering and Technology, pp.165-170

[10] Chao-Jung Hsu and Chin-Yu Huang (2011), “An Adaptive Reliability Analysis Using

Path Testing for Complex Component based Software Systems” in IEEE Transaction

on Reliability Vol. 60, No 1 pp 158-170.

[11] Singh A. P. And Tomar P. (2012), “A Proposed Methodology for Reliability

Estimation of Component-Based Software”, in proceeding of International

Conference on Optimization Modelling and Applications.

[12] Tae-Hyun Yoo “The Infinite NHPP Software Reliability Model based on Monotonic

Intensity Function”July 2015.

[13] Kapur K., Garg B., and Kumar S., Contributions to Hardware and Software Relia-

bility, World Scientific, New York, 1999.

[14] S. M. K. Quadri, N. Ahmad, Sheikh Umar Farooq “Software Reliability Growth

modeling with Generalized Exponential testing –effort and optimal SOFTWARE

RELEASE Policy” February 2011

[15] Bijoyeta Roy1, Santanu Kr. Misra2, AradhanaBasak “A Quantitative Analysis of

NHPP Based Software Reliability Growth Models” January 2014

[16] Cobra Rahmani“Exploitation of Quantitative Approaches to Software Reliability”

2008

[17] Richard Lai*, MohitGarg “A Detailed Study of NHPP Software Reliability

Models”JOURNAL OF SOFTWARE, VOL. 7, NO. 6, JUNE 2012

[18] Chin-Yu Huang, Wei-Chih Huang “Software Reliability Analysis and Measurement

Using Finite and Infinite Server Queueing Models” IEEE TRANSACTIONS ON

RELIABILITY, VOL. 57, NO. 1, MARCH 2008

[19] Jagvinder Singh1, Adarsh Anand2, Avneesh Kumar3 “ A Discrete Formulation of

Successive Software Releases Based on Imperfect Debugging” September (2014)

[20] N. Ahmada, M. G. M. Khanband L. S. Rafi “Analysis of an Inflection S-shaped

Software Reliability Model Considering Log-logistic Testing-Effort and Imperfect

Debugging” January 2011

[21] JavaidIqbal “Software reliability growth models: A comparison of linear and ex-

ponential fault content functions for study of imperfect debugging situations” 20

January 2017

[22] Carina Andersson, ”A replicated empirical study of a selection method for software

reliability growth models,” Journal of Empirical Software Engineering, Vol. 12, No. 2,

pp. 161–182, Apr 2007.

[23] Chin-Yu Huang, Sy-Yen Kuo and Michael R. Lyu, ”An Assessment of Testing-Effort

Dependent Software Reliability Growth Models,” IEEE Transactions on Reliability,

International Journal of Research in IT and Management (IJRIM)
Available online at: http://euroasiapub.org

Vol. 13 Issue 11, November- 2023

ISSN(o): 2231-4334 | ISSN(p): 2349-6517 | Impact Factor: 8.106

International Journal of Research in IT and Management (IJRIM)
 Email:- editorijrim@gmail.com, http://www.euroasiapub.org

 (An open access scholarly, peer-reviewed, interdisciplinary, monthly, and fully refereed journal.)

108

Vol. 56, No. 2, pp. 198-211, Jun 2007.

[24] Lev V. Utkin, Svetlana I. Zatenko and Frank P.A. Coolen, ”Combining impre-

cise Bayesian and maximum likelihood estimation for reliability growth models,” In

Proc. of the Sixth International Symposium on Imprecise Probability: Theories and

Applications, Durham, UK, 2009.

[25] N. Ahmad, S. M. K Quadri and RazeefMohd, ”Comparison of Predictive Capability of

Software Reliability Growth Models with ExponentiatedWeibull Distribution,”

International Journal of Computer Applications, Vol. 15, No. 6, pp. 40-43, Feb 2011.

[26] P. K. Kapur, H. Pham, Sameer Anand and KalpanaYadav, ”A Unified Approach for

Developing Software Reliability Growth Models in the Presence of Imperfect

Debugging and Error Generation,” IEEE Transactions on Reliability, Vol. 60, No. 1,

pp. 331-340, Mar 2011.

[27] S. M. K. Quadri, N. Ahmad and Sheikh Umar Farooq, ”Software Reliability Growth

modeling with Generalized Exponential testing –effort and optimal Software Release

policy,” Global Journal of Computer Science and Technology, Vol. 11, No. 2, pp. 27-

42, Feb 2011.

[28] RadekDobias, Hana Kubatova “FPGA Based Design of the Railway‟s Interlocking

Equipments”

[29] K.VenkataSubba Reddy, Dr.B.Raveendrababu “Software Reliability Growth Model

With Testing-Effort by Failure Free Software”International Journal of Engineering

and Innovative Technology (IJEIT) Volume 2, Issue 6, December 2012

[30] Shinji Inoue, Shigeru Yamada “Lognormal Process Software Reliability Modeling with

Testing-Effort” February 6th, 2013

