

International Journal of Research in IT and Management (IJRIM)
Available online at: http://euroasiapub.org

Vol. 14 Issue 11, Nov- 2024

ISSN(o): 2231-4334 | ISSN(p): 2349-6517 |

Impact Factor: 8.106

International Journal of Research in IT and Management (IJRIM)
 Email:- editorijrim@gmail.com, http://www.euroasiapub.org

 (An open access scholarly, peer-reviewed, interdisciplinary, monthly, and fully refereed journal.)

1

Improving System Reliability: A Predictive Model for Interlocking Software in Safety-Critical

Applications

Nidhi

Research Scholar, Mewar University, Chittorgarh, Rajasthan

Dr. G.G. Varshney

Research Supervisor, Professor Department of Computer Science, Mewar University, Chittorgarh,

Rajasthan

DOI:euro.ijrim.99839.88738

Abstract: The safe and effective operation of many systems, particularly safety-critical applications like

interlocking software in railway control systems, depends heavily on software stability. In order to

increase system reliability, this research study suggests a novel Software Reliability Prediction Model

(SRPM) that is especially made for interlocking software. The model uses statistical analysis and

historical data to forecast reliability metrics and estimate possible failures by taking into account a

number of variables, including software complexity, fault density, and operational profile. The

validation and use of the SRPM are also covered in the study, with an emphasis on how it might improve

the safety and dependability of interlocking software systems.

Keywords: Reliability, Software, failure, SRPM

Introduction:

Interlocking systems are used primarily in railway signaling, controlling the movement of trains to

ensure safety and avoid collisions. These systems require high levels of reliability and safety due to their

direct impact on human lives and public safety. Predicting the reliability of interlocking software is

critical to minimizing failures and enhancing the overall safety of the system.

Reliability Prediction Models for interlocking software can be divided into different categories based

on the type of data, approaches, and underlying assumptions used. Here's an overview of how such a

model could be structured and the factors to consider:

Key Considerations for Interlocking Software

1. Safety-Critical Nature:

 Interlocking software is safety-critical, meaning any software failure can directly result in accidents,

injuries, or fatalities.

 Reliability models must ensure that they account for extremely low failure rates, high availability,

and thorough testing.

International Journal of Research in IT and Management (IJRIM)
Available online at: http://euroasiapub.org

Vol. 14 Issue 11, Nov- 2024

ISSN(o): 2231-4334 | ISSN(p): 2349-6517 |

Impact Factor: 8.106

International Journal of Research in IT and Management (IJRIM)
 Email:- editorijrim@gmail.com, http://www.euroasiapub.org

 (An open access scholarly, peer-reviewed, interdisciplinary, monthly, and fully refereed journal.)

2

2. Real-Time Constraints:

 Interlocking systems typically operate in real-time, meaning that failure to meet timing constraints

could result in unsafe operations.

 Prediction models need to account for these real-time operational conditions.

3. Complexity:

 Interlocking systems are often complex, consisting of many interconnected modules (e.g., train

detection, signaling, track switching).

 The software is often highly modular, with different components responsible for different aspects

of the system.

4. Historical Data and Failure Modes:

 The reliability of software in safety-critical systems is heavily influenced by historical failure data

and the specific failure modes observed during operation.

Steps to Build a Software Reliability Prediction Model for Interlocking Systems

1. Failure Data Collection:

 Gather historical data related to the interlocking system, including:

 Failure rates of software components

 Types of failures (logical errors, timing issues, etc.)

 Frequency of failures

 Time to repair

 The data can come from operational logs, maintenance records, or previous versions of the software.

2. Software Reliability Models: Several models can be used for predicting the reliability of

interlocking software. Some common models include:

a. Poisson Process Model (Non-Homogeneous Poisson Process - NHPP)

International Journal of Research in IT and Management (IJRIM)
Available online at: http://euroasiapub.org

Vol. 14 Issue 11, Nov- 2024

ISSN(o): 2231-4334 | ISSN(p): 2349-6517 |

Impact Factor: 8.106

International Journal of Research in IT and Management (IJRIM)
 Email:- editorijrim@gmail.com, http://www.euroasiapub.org

 (An open access scholarly, peer-reviewed, interdisciplinary, monthly, and fully refereed journal.)

3

 Use case: When software failure is rare but may occur unpredictably.

 Assumptions: Failures occur randomly over time, but the rate of failures can change as the software

evolves (e.g., new versions, bug fixes).

 Reliability Function:R(t)=e−λ(t)R(t)=e−λ(t)where λ(t)λ(t) is the failure intensity function.

b. Markov Models

 Use case: When the software can transition between different states, such as operational, under

maintenance, or faulty.

 Assumptions: The system is modeled as a set of states, and transitions between these states occur

at rates based on probabilities derived from historical data.

 Reliability Function: Markov chains can calculate the likelihood of the system being in a safe (non-

faulty) state at any given time.

c. Weibull Distribution Model

 Use case: When failure rates vary over time (e.g., "infant mortality" failures followed by steady-

state failures).

 Reliability Function:R(t)=e−(t/β)αR(t)=e−(t/β)αwhere αα is the shape parameter (which defines

the failure rate behavior), and ββ is the scale parameter.

d. Bayesian Network Approach

 Use case: When uncertainty is high and multiple failure causes need to be modeled.

 Assumptions: Different components interact in complex ways. A Bayesian network can represent

the dependencies between components and their failure probabilities.

 Reliability Function: The model updates belief distributions as new data becomes available.

2. Fault Tree Analysis (FTA):

 Purpose: To model the possible causes of system failures.

 A fault tree is constructed where the top event is a system failure (e.g., failure to provide correct

train signals), and the lower-level events describe the component failures (e.g., failure of sensors,

communication errors).

International Journal of Research in IT and Management (IJRIM)
Available online at: http://euroasiapub.org

Vol. 14 Issue 11, Nov- 2024

ISSN(o): 2231-4334 | ISSN(p): 2349-6517 |

Impact Factor: 8.106

International Journal of Research in IT and Management (IJRIM)
 Email:- editorijrim@gmail.com, http://www.euroasiapub.org

 (An open access scholarly, peer-reviewed, interdisciplinary, monthly, and fully refereed journal.)

4

 Using Boolean logic, the fault tree helps determine the probability of system failure based on

component failure probabilities.

3. Failure Mode Effect Analysis (FMEA):

 Purpose: To identify potential failure modes in each component of the interlocking system and

assess their impact on system functionality.

 Each failure mode is given a severity, occurrence, and detection rating, and the Risk Priority

Number (RPN) is calculated to prioritize which failure modes to address first.

 Formula for RPN:RPN=Severity×Occurrence×DetectionRPN=Severity×Occurrence×Detection

4. Failure Mode Effect Analysis (FMEA):

 Purpose: To identify potential failure modes in each component of the interlocking system and

assess their impact on system functionality.

 Each failure mode is given a severity, occurrence, and detection rating, and the Risk Priority

Number (RPN) is calculated to prioritize which failure modes to address first.

 Formula for RPN:RPN=Severity×Occurrence×DetectionRPN=Severity×Occurrence×Detection

5. Testing and Validation:

 Testing: Rigorous testing, such as fault injection and stress testing, to validate the reliability of the

software under different conditions.

 Model Validation: The model must be validated by comparing its predictions against actual system

performance over time, adjusting for new data when necessary.

5. Reliability Metrics:

 Mean Time Between Failures (MTBF): Average time between system failures.

 Availability: Proportion of time the system is in a fully operational state.

 Failure Intensity: Rate at which failures are likely to occur in a given period.

 Reliability Growth Models: Predict how reliability improves with continued testing and

operational use (e.g., through bug fixing, software patches).

Example Framework for Predicting Reliability

International Journal of Research in IT and Management (IJRIM)
Available online at: http://euroasiapub.org

Vol. 14 Issue 11, Nov- 2024

ISSN(o): 2231-4334 | ISSN(p): 2349-6517 |

Impact Factor: 8.106

International Journal of Research in IT and Management (IJRIM)
 Email:- editorijrim@gmail.com, http://www.euroasiapub.org

 (An open access scholarly, peer-reviewed, interdisciplinary, monthly, and fully refereed journal.)

5

1. Data Collection:

 Assume historical failure data from previous deployments, such as:

 Number of failures per year

 Mean time between failures (MTBF)

 Specific failure modes and causes

2. Model Selection:

 Use an NHPP model, assuming failure rates are initially high during the early life of the software

and decrease over time as bugs are fixed.

 The failure intensity function might look like this:

λ(t)=αtβλ(t)=αtβ

where αα and ββ are constants derived from the historical data.

3. Reliability Function:

 Using the NHPP model, the reliability function can be expressed as:R(t)=e−αtβ+1R(t)=e−αtβ+1

4. Fault Tree Analysis:

 Develop a fault tree for a particular failure event, such as a signal not being displayed correctly.

The fault tree will consider the failure of individual sensors, communication lines, and signal

logic.

5. Model Calibration:

 Calibrate the model by comparing predicted failures with actual data from a pilot deployment or

testing environment.

 Adjust the model parameters based on real-world performance.

6. Reliability Metrics:

 Calculate key reliability metrics (e.g., MTBF, availability) to assess the system's operational

effectiveness and safety.

International Journal of Research in IT and Management (IJRIM)
Available online at: http://euroasiapub.org

Vol. 14 Issue 11, Nov- 2024

ISSN(o): 2231-4334 | ISSN(p): 2349-6517 |

Impact Factor: 8.106

International Journal of Research in IT and Management (IJRIM)
 Email:- editorijrim@gmail.com, http://www.euroasiapub.org

 (An open access scholarly, peer-reviewed, interdisciplinary, monthly, and fully refereed journal.)

6

Conclusion

Predicting the reliability of interlocking software requires the application of sophisticated software

reliability models, including statistical and probabilistic approaches like NHPP, Markov Chains, or

Weibull distribution. Given the safety-critical nature of these systems, model accuracy is crucial. Tools

such as Fault Tree Analysis (FTA) and Failure Mode and Effects Analysis (FMEA) can complement

predictive models by highlighting potential failure scenarios and focusing mitigation efforts where they

are most needed. Rigorous testing and continuous monitoring of software performance are essential for

ensuring that the interlocking system meets safety and reliability standards over its entire lifecycle.

References

[1]. R. Cheung, (1980), “A User-Oriented Software Reliability Model”, in IEEE Transactions on

Software Engineering, 6(2), pp. 118-125.

[2]. P. Kubat (1989), “Assessing Reliability of Modular Software”. Operations Research Letters, (8),

pp. 35-41.

[3]. S. Gokhale and K. Trivedi (1998), “Dependency Characterization in Path-Based Approaches to

Architecture-Based Software Reliability Prediction,” in proceeding of IEEE Workshop on

application Specific Software Engineering and Technology (ASSET’98), Richardson, Texas, Mar.

26–28, pp. 86–89.

[4]. W. Everett, (1999), “Software Component Reliability Analysis”, in proceeding of Symposium

Application Specific systems and Software Engineering Technology (ASSET’99), pp 204-211.

[5]. H. Singh, V. Cortellessa, B. Cukic, E. Gunel and V. Bharadwaj (2001), “A Bayesian Approach to

Reliability Prediction and Assessment of Component-Based Systems”, in proceeding of 12th IEEE

International Symposium on Software Reliability Engineering, Hong Kong, pp. 12-21.

[6]. S. Yacoub, B. Cukic, and H. Ammar. (2004), “A Scenario-Based Reliability Analysis Approach for

Component-Based Software”, in IEEE Transactions on Reliability, Vol. 28, No. 6, pp. 529-54.

[7]. Wang Dong , Ning Huang, Ye Ming (2008), “Reliability Analysis of Component–Based Software

Based on Relationships of Components”, in proceeding of IEEE Conference on Web Services, pp

814-815.

[8]. Fan Zhang, Xingshe Zhou, Junwen Chen, Yunwei Dong (2008), “A Novel Model for Component-

Based Software Reliability Analysis” in proceeding of 11th IEEE High Assurance Systems

Engineering Symposium, pp 303-309.

International Journal of Research in IT and Management (IJRIM)
Available online at: http://euroasiapub.org

Vol. 14 Issue 11, Nov- 2024

ISSN(o): 2231-4334 | ISSN(p): 2349-6517 |

Impact Factor: 8.106

International Journal of Research in IT and Management (IJRIM)
 Email:- editorijrim@gmail.com, http://www.euroasiapub.org

 (An open access scholarly, peer-reviewed, interdisciplinary, monthly, and fully refereed journal.)

7

[9]. Yuanjie Si, Xiaohu Yang, Xinyu Wang,Chao Huang,Aleksander J. Kavs, (2011), “An Architecture-

Based Reliability Estimation framework Through Component Composition Mechanisms”, in

proceeding of International Conference on Computer Engineering and Technology, pp.165-170

[10]. Chao-Jung Hsu and Chin-Yu Huang (2011), “An Adaptive Reliability Analysis Using Path Testing

for Complex Component based Software Systems” in IEEE Transaction on Reliability Vol. 60, No

1 pp 158-170.

[11]. Singh A. P. And Tomar P. (2012), “A Proposed Methodology for Reliability Estimation of

Component-Based Software”, in proceeding of International Conference on Optimization

Modelling and Applications.

[12]. Tae-Hyun Yoo “The Infinite NHPP Software Reliability Model based on Monotonic Intensity

Function”July 2015.

[13]. Kapur K., Garg B., and Kumar S., Contributions to Hardware and Software Relia- bility, World

Scientific, New York, 1999.

[14]. S. M. K. Quadri, N. Ahmad, Sheikh Umar Farooq “Software Reliability Growth modeling

with Generalized Exponential testing –effort and optimal SOFTWARE RELEASE Policy”

February 2011

[15]. Bijoyeta Roy1, Santanu Kr. Misra2, AradhanaBasak “A Quantitative Analysis of NHPP

Based Software Reliability Growth Models” January 2014

[16]. Cobra Rahmani“Exploitation of Quantitative Approaches to Software Reliability” 2008

[17]. Richard Lai*, MohitGarg “A Detailed Study of NHPP Software Reliability

Models”JOURNAL OF SOFTWARE, VOL. 7, NO. 6, JUNE 2012

[18]. Chin-Yu Huang, Wei-Chih Huang “Software Reliability Analysis and Measurement Using

Finite and Infinite Server Queueing Models” IEEE TRANSACTIONS ON

RELIABILITY, VOL. 57, NO. 1, MARCH 2008

[19]. Jagvinder Singh1, Adarsh Anand2, Avneesh Kumar3 “ A Discrete Formulation of Successive

Software Releases Based on Imperfect Debugging” September (2014)

[20]. N. Ahmada, M. G. M. Khanband L. S. Rafi “Analysis of an Inflection S-shaped Software

Reliability Model Considering Log-logistic Testing-Effort and Imperfect Debugging” January

2011

[21]. JavaidIqbal “Software reliability growth models: A comparison of linear and ex- ponential fault

content functions for study of imperfect debugging situations” 20 January 2017

International Journal of Research in IT and Management (IJRIM)
Available online at: http://euroasiapub.org

Vol. 14 Issue 11, Nov- 2024

ISSN(o): 2231-4334 | ISSN(p): 2349-6517 |

Impact Factor: 8.106

International Journal of Research in IT and Management (IJRIM)
 Email:- editorijrim@gmail.com, http://www.euroasiapub.org

 (An open access scholarly, peer-reviewed, interdisciplinary, monthly, and fully refereed journal.)

8

[22]. Carina Andersson, ”A replicated empirical study of a selection method for software reliability

growth models,” Journal of Empirical Software Engineering, Vol. 12, No. 2, pp. 161–182, Apr

2007.

[23]. Chin-Yu Huang, Sy-Yen Kuo and Michael R. Lyu, ”An Assessment of Testing-Effort

Dependent Software Reliability Growth Models,” IEEE Transactions on Reliability, Vol. 56,

No. 2, pp. 198-211, Jun 2007.

[24]. N. Ahmad, S. M. K Quadri and RazeefMohd, ”Comparison of Predictive Capability of

Software Reliability Growth Models with ExponentiatedWeibull Distribution,” International

Journal of Computer Applications, Vol. 15, No. 6, pp. 40-43, Feb 2011.

[25]. P. K. Kapur, H. Pham, Sameer Anand and KalpanaYadav, ”A Unified Approach for

Developing Software Reliability Growth Models in the Presence of Imperfect Debugging and

Error Generation,” IEEE Transactions on Reliability, Vol. 60, No. 1, pp. 331-340, Mar

2011.

[26]. S. M. K. Quadri, N. Ahmad and Sheikh Umar Farooq, ”Software Reliability Growth modeling

with Generalized Exponential testing –effort and optimal Software Release policy,” Global Journal

of Computer Science and Technology, Vol. 11, No. 2, pp. 27-42, Feb 2011.

[27]. K. VenkataSubba Reddy, Dr. B. Raveendrababu “Software Reliability Growth Model With

Testing-Effort by Failure Free Software”International Journal of Engineering and Innovative

Technology (IJEIT) Volume 2, Issue 6, December 2012.

